Skip to main content

Learning Mixtures of Separable Dictionaries for Tensor Data: Analysis and Algorithms

This work addresses the problem of learning sparse representations of tensor data using structured dictionary learning. It proposes learning a mixture of separable dictionaries to better capture the structure of tensor data by generalizing the separable dictionary learning model. Two different approaches for learning mixture of separable dictionaries are explored and sufficient conditions for local identifiability of the underlying dictionary are derived in each case.

On the Sample Complexity of Graphical Model Selection From Non-Stationary Samples

We study conditions that allow accurate graphical model selection from non-stationary data. The observed data is modelled as a vector-valued zero-mean Gaussian random process whose samples are uncorrelated but have different covariance matrices. This model contains as special cases the standard setting of i.i.d. samples as well as the case of samples forming a stationary time series.

Tensor Completion from Regular Sub-Nyquist Samples

Signal sampling and reconstruction is a fundamental engineering task at the heart of signal processing. The celebrated Shannon-Nyquist theorem guarantees perfect signal reconstruction from uniform samples, obtained at a rate twice the maximum frequency present in the signal. Unfortunately a large number of signals of interest are far from being band-limited. 

Hybrid Sparse Array Beamforming Design for General Rank Signal Models

The paper considers sparse array design for receive beamforming achieving maximum signal-to-interference plus noise ratio (MaxSINR) for both single point source and multiple point sources, operating in an interference active environment. Unlike existing sparse design methods which either deal with structured environment-independent or non-structured environment-dependent arrays, our method is a hybrid approach and seeks a full augumentable array that optimizes beamformer performance.