Skip to main content

Learning Tensors From Partial Binary Measurements

We generalize the 1-bit matrix completion problem to higher order tensors. Consider a rank- r order- d tensorT in RN ××RN  with bounded entries. We show that when r=O(1) , such a tensor can be estimated efficiently from only m=Or (Nd)  binary measurements. This shows that the sample complexity of recovering a low-rank tensor from 1-bit measurements of a subset of its entries is roughly the same as recovering it from unquantized measurements—a result that had been known only in the matrix case, i.e., when d=2.

Learning of Tree-Structured Gaussian Graphical Models on Distributed Data Under Communication Constraints

In this paper, learning of tree-structured Gaussian graphical models from distributed data is addressed. In our model, samples are stored in a set of distributed machines where each machine has access to only a subset of features. A central machine is then responsible for learning the structure based on received messages from the other nodes. We present a set of communication-efficient strategies, which are theoretically proved to convey sufficient information for reliable learning of the structure.

High-Fidelity Spatial Signal Processing in Low-Power Mixed-Signal VLSI Arrays

Machine learning and related statistical signal processing are expected to endow sensor networks with adaptive machine intelligence and greatly facilitate the Internet of Things (IoT). As such, architectures embedding adaptive and learning algorithms on-chip are oft-ignored by system architects and design engineers, and present a new set of design trade-offs.