Skip to main content

OJSP Articles

<p>OJSP Articles</p>

Robust Gridless Estimation of Angles and Delays for Full-Dimensional Wideband mmWave Channels

In this paper, we consider robust channel estimation for a millimeter wave (mmWave) massive MIMO system with uniform planar arrays (UPA). For many gridless angle estimation methods of mmWave channels, the channel gains needs to be time-invariant during training. We propose a gridless method that is applicable to time-invariant and time-varying channels, and the proposed method is robust to channel variations. 

Read more

Recallable Question Answering-Based Re-Ranking Considering Semantic Region for Cross-Modal Retrieval

Question answering (QA)-based re-ranking methods for cross-modal retrieval have been recently proposed to further narrow down similar candidate images. The conventional QA-based re-ranking methods provide questions to users by analyzing candidate images, and the initial retrieval results are re-ranked based on the user's feedback. Contrary to these developments, only focusing on performance improvement makes it difficult to efficiently elicit the user's retrieval intention.

Read more

False Discovery Rate (FDR) and Familywise Error Rate (FER) Rules for Model Selection in Signal Processing Applications

Model selection is an omnipresent problem in signal processing applications. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are the most commonly used solutions to this problem. These criteria have been found to have satisfactory performance in many cases and had a dominant role in the model selection literature since their introduction several decades ago, despite numerous attempts to dethrone them. Model selection can be viewed as a multiple hypothesis testing problem.

Read more

Natural Thresholding Algorithms for Signal Recovery With Sparsity

The algorithms based on the technique of optimal k -thresholding (OT) were recently proposed for signal recovery, and they are very different from the traditional family of hard thresholding methods. However, the computational cost for OT-based algorithms remains high at the current stage of their development. This stimulates the development of the so-called natural thresholding (NT) algorithm and its variants in this paper. The family of NT algorithms is developed through the first-order approximation of the so-called regularized optimal k -thresholding model, and thus the computational cost for this family of algorithms is significantly lower than that of the OT-based algorithms. 

Read more

Coded Illumination for 3D Lensless Imaging

Mask-based lensless cameras offer a novel design for imaging systems by replacing the lens in a conventional camera with a layer of coded mask. Each pixel of the lensless camera encodes the information of the entire 3D scene. Existing methods for 3D reconstruction from lensless measurements suffer from poor spatial and depth resolution.

Read more

Sparsest Univariate Learning Models Under Lipschitz Constraint

Beside the minimizationof the prediction error, two of the most desirable properties of a regression scheme are stability and interpretability . Driven by these principles, we propose continuous-domain formulations for one-dimensional regression problems. In our first approach, we use the Lipschitz constant as a regularizer, which results in an implicit tuning of the overall robustness of the learned mapping.

Read more

Dif-MAML: Decentralized Multi-Agent Meta-Learning

The objective of meta-learning is to exploit knowledge obtained from observed tasks to improve adaptation to unseen tasks. Meta-learners are able to generalize better when they are trained with a larger number of observed tasks and with a larger amount of data per task. Given the amount of resources that are needed, it is generally difficult to expect the tasks, their respective data, and the necessary computational capacity to be available at a single central location.

Read more

A Hybrid Model-Based and Learning-Based Approach for Classification Using Limited Number of Training Samples

The fundamental task of classification given a limited number of training data samples is considered for physicalsystems with known parametric statistical models. The standalone learning-based and statistical model-based classifiers face major challenges towards the fulfillment of the classification task using a small training set. Specifically, classifiers that solely rely on the physics-based statistical models usually suffer from their inability to properly tune the underlying unobservable parameters, which leads to a mismatched representation of the system’s behaviors.

Read more

Learning of Continuous and Piecewise-Linear Functions With Hessian Total-Variation Regularization

We develop a novel 2D functional learning framework that employs a sparsity-promoting regularization based on second-order derivatives. Motivated by the nature of the regularizer, we restrict the search space to the span of piecewise-linear box splines shifted on a 2D lattice. Our formulation of the infinite-dimensional problem on this search space allows us to recast it exactly as a finite-dimensional one that can be solved using standard methods in convex optimization.

Read more