OJSP Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

OJSP Articles

OJSP Articles

Question answering (QA)-based re-ranking methods for cross-modal retrieval have been recently proposed to further narrow down similar candidate images. The conventional QA-based re-ranking methods provide questions to users by analyzing candidate images, and the initial retrieval results are re-ranked based on the user's feedback. Contrary to these developments, only focusing on performance improvement makes it difficult to efficiently elicit the user's retrieval intention.

Model selection is an omnipresent problem in signal processing applications. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are the most commonly used solutions to this problem. These criteria have been found to have satisfactory performance in many cases and had a dominant role in the model selection literature since their introduction several decades ago, despite numerous attempts to dethrone them. Model selection can be viewed as a multiple hypothesis testing problem.

The algorithms based on the technique of optimal k -thresholding (OT) were recently proposed for signal recovery, and they are very different from the traditional family of hard thresholding methods. However, the computational cost for OT-based algorithms remains high at the current stage of their development. This stimulates the development of the so-called natural thresholding (NT) algorithm and its variants in this paper. The family of NT algorithms is developed through the first-order approximation of the so-called regularized optimal k -thresholding model, and thus the computational cost for this family of algorithms is significantly lower than that of the OT-based algorithms. 

Mask-based lensless cameras offer a novel design for imaging systems by replacing the lens in a conventional camera with a layer of coded mask. Each pixel of the lensless camera encodes the information of the entire 3D scene. Existing methods for 3D reconstruction from lensless measurements suffer from poor spatial and depth resolution.

Beside the minimizationof the prediction error, two of the most desirable properties of a regression scheme are stability and interpretability . Driven by these principles, we propose continuous-domain formulations for one-dimensional regression problems. In our first approach, we use the Lipschitz constant as a regularizer, which results in an implicit tuning of the overall robustness of the learned mapping.

The objective of meta-learning is to exploit knowledge obtained from observed tasks to improve adaptation to unseen tasks. Meta-learners are able to generalize better when they are trained with a larger number of observed tasks and with a larger amount of data per task. Given the amount of resources that are needed, it is generally difficult to expect the tasks, their respective data, and the necessary computational capacity to be available at a single central location.

The fundamental task of classification given a limited number of training data samples is considered for physicalsystems with known parametric statistical models. The standalone learning-based and statistical model-based classifiers face major challenges towards the fulfillment of the classification task using a small training set. Specifically, classifiers that solely rely on the physics-based statistical models usually suffer from their inability to properly tune the underlying unobservable parameters, which leads to a mismatched representation of the system’s behaviors.

We develop a novel 2D functional learning framework that employs a sparsity-promoting regularization based on second-order derivatives. Motivated by the nature of the regularizer, we restrict the search space to the span of piecewise-linear box splines shifted on a 2D lattice. Our formulation of the infinite-dimensional problem on this search space allows us to recast it exactly as a finite-dimensional one that can be solved using standard methods in convex optimization.

The paper develops novel algorithms for time-varying (TV) sparse channel estimation in Massive multiple-input, multiple-output (MMIMO) systems. This is achieved by employing a novel reduced (non-uniformly spaced tap) delay-line equalizer, which can be related to low/reduced rank filters. This low rank filter is implemented by deriving an innovative TV (Krylov-space based) Multi-Stage Kalman Filter (MSKF), employing appropriate state estimation techniques.

Target source extractionis significant for improving human speech intelligibility and the speech recognition performance of computers. This study describes a method for target source extraction, called the similarity-and-independence-awarebeamformer (SIBF). The SIBF extracts the target source using a rough magnitude spectrogram as the reference signal. The advantage of the SIBF is that it can obtain a more accurate signal than the spectrogram generated by target-enhancing methods such as speech enhancement based on deep neural networks. 

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel