OJSP Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

OJSP Articles

OJSP Articles

The prominent success of neural networks, mainly in computer vision tasks, is increasingly shadowed by their sensitivity to small, barely perceivable adversarial perturbations in image input. In this article, we aim at explaining this vulnerability through the framework of sparsity. We show the connection between adversarial attacks and sparse representations, with a focus on explaining the universality and transferability of adversarial examples in neural networks.

An online topology estimation algorithm for nonlinear structural equation models (SEM) is proposed in this paper, addressing the nonlinearity and the non-stationarity of real-world systems. The nonlinearity is modeled using kernel formulations, and the curse of dimensionality associated with the kernels is mitigated using random feature approximation.

The Discrete Wavelet Transform (DWT) has gained attention in the area of Multi-Carrier Modulation (MCM) because it can overcome some well known limitations of Discrete Fourier Transform (DFT) based MCM systems. Its improved spectral containment removes the need for a cyclic prefix, be it that appropriate equalization then has to be added as the cyclic convolution property no longer holds. Most DWT based MCM systems in the literature use Time-domain EQualizers (TEQs) to mitigate the channel distortion. 

With the integration of communication and computing, it is expected that part of the computing is transferred to the transmitter side. In this paper we address the general problem of Frequency Modulation (FM) for function approximation through a communication channel. We exploit the benefits of the Discrete Cosine Transform (DCT) to approximate the function and design the waveform. In front of other approximation schemes, the DCT uses basis of controlled dynamic, which is a desirable property for a practical implementation. 

In this paper, we consider robust channel estimation for a millimeter wave (mmWave) massive MIMO system with uniform planar arrays (UPA). For many gridless angle estimation methods of mmWave channels, the channel gains needs to be time-invariant during training. We propose a gridless method that is applicable to time-invariant and time-varying channels, and the proposed method is robust to channel variations. 

Quantized constant envelope (QCE) transmission is a popular and effective technique to reduce the hardware cost and improve the power efficiency of 5G and beyond systems equipped with large antenna arrays. It has been widely observed that the number of quantization levels has a substantial impact on the system performance.

Question answering (QA)-based re-ranking methods for cross-modal retrieval have been recently proposed to further narrow down similar candidate images. The conventional QA-based re-ranking methods provide questions to users by analyzing candidate images, and the initial retrieval results are re-ranked based on the user's feedback. Contrary to these developments, only focusing on performance improvement makes it difficult to efficiently elicit the user's retrieval intention.

Model selection is an omnipresent problem in signal processing applications. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are the most commonly used solutions to this problem. These criteria have been found to have satisfactory performance in many cases and had a dominant role in the model selection literature since their introduction several decades ago, despite numerous attempts to dethrone them. Model selection can be viewed as a multiple hypothesis testing problem.

The algorithms based on the technique of optimal k -thresholding (OT) were recently proposed for signal recovery, and they are very different from the traditional family of hard thresholding methods. However, the computational cost for OT-based algorithms remains high at the current stage of their development. This stimulates the development of the so-called natural thresholding (NT) algorithm and its variants in this paper. The family of NT algorithms is developed through the first-order approximation of the so-called regularized optimal k -thresholding model, and thus the computational cost for this family of algorithms is significantly lower than that of the OT-based algorithms. 

Mask-based lensless cameras offer a novel design for imaging systems by replacing the lens in a conventional camera with a layer of coded mask. Each pixel of the lensless camera encodes the information of the entire 3D scene. Existing methods for 3D reconstruction from lensless measurements suffer from poor spatial and depth resolution.


SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar