Skip to main content

OJSP Volume 5 | 2024

<p>OJSP Volume 5 | 2024</p>

Issue Title
OJSP Volume 5 | 2024

A Neural-Enhanced Factor Graph-Based Algorithm for Robust Positioning in Obstructed LOS Situations

This paper presents a neural-enhanced probabilistic model and corresponding factor graph-based sum-product algorithm for robust localization and tracking in multipath-prone environments. The introduced hybrid probabilistic model consists of physics-based and data-driven measurement models capturing the information contained in both, the line-of-sight (LOS) component as well as in multipath components (NLOS components). The physics-based and data-driven models are embedded in a joint Bayesian framework allowing to derive from first principles a factor graph-based algorithm that fuses the information of these models.

Read more

The Neural-SRP Method for Universal Robust Multi-Source Tracking

Neural networks have achieved state-of-the-art performance on the task of acoustic Direction-of-Arrival (DOA) estimation using microphone arrays. Neural models can be classified as end-to-end or hybrid, each class showing advantages and disadvantages. This work introduces Neural-SRP, an end-to-end neural network architecture for DOA estimation inspired by the classical Steered Response Power (SRP) method, which overcomes limitations of current neural models.

Read more

Moving Target At Constant Velocity Localization Using TOA Measurements From Single Moving Receiver With Unknown Signal Period

In this article, we consider using time-of-arrival (TOA) measurements from a single moving receiver to locate a moving target at constant velocity that emits a periodic signal with unknown signal period. First, we give the TOA measurement model and deduce the Cram e´ r-Rao lower bounds (CRLB). Then, we formulate a nonlinear least squares (NLS) problem to estimate the unknown parameters. We use semidefinite programming (SDP) techniques to relax the nonconvex NLS problem.

Read more

Synthbuster: Towards Detection of Diffusion Model Generated Images

Synthetically-generated images are getting increasingly popular. Diffusion models have advanced to the stage where even non-experts can generate photo-realistic images from a simple text prompt. They expand creative horizons but also open a Pandora's box of potential disinformation risks. In this context, the present corpus of synthetic image detection techniques, primarily focusing on older generative models like Generative Adversarial Networks, finds itself ill-equipped to deal with this emerging trend.

Read more