Skip to main content

TASLP Volume 27 Issue 9

Relation Classification via Keyword-Attentive Sentence Mechanism and Synthetic Stimulation Loss

Previous studies have shown that attention mechanisms and shortest dependency paths have a positive effect on relation classification. In this paper, a keyword-attentive sentence mechanism is proposed to effectively combine the two methods. Furthermore, to effectively handle the imbalanced classification problem, this paper proposes a new loss function called the synthetic stimulation loss , which uses a modulating factor to allow the model to focus on hard-to-classify samples.

Read more

AgentGraph: Toward Universal Dialogue Management With Structured Deep Reinforcement Learning

Dialogue policy plays an important role in task-oriented spoken dialogue systems. It determines how to respond to users. The recently proposed deep reinforcement learning (DRL) approaches have been used for policy optimization. However, these deep models are still challenging for two reasons: first, many DRL-based policies are not sample efficient; and second, most models do not have the capability of policy transfer between different domains.

Read more

Methods of Extending a Generalized Sidelobe Canceller With External Microphones

While substantial noise reduction and speech enhancement can be achieved with multiple microphones organized in an array, in some cases, such as when the microphone spacings are quite close, it can also be quite limited. This degradation can, however, be resolved by the introduction of one or more external microphones ( XM s) into the same physical space as the local microphone array ( LMA ). 

Read more