TCI Volume 9 | 2023

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2023

TCI Volume 9 | 2023

Light Fields (LFs) are easily degraded by noise and low light. Low light LF enhancement and denoising are more challenging than single image tasks because the epipolar information among views should be taken into consideration. In this work, we propose a multiple stream progressive restoration network to restore the whole LF in just one forward pass. To make full use of the multiple views supplementary information and preserve the epipolar information, we design three types of input composed of view stacking.

In the snapshot compressive imaging (SCI) field, how to explore priors for recovering the original high-dimensional data from its lower-dimensional measurements is a challenge. Recent plug-and-play efforts plugged by deep denoisers have achieved superior performance, and their convergences have been guaranteed under the assumption of bounded denoisers and the condition of diminishing noise levels. However, it is difficult to explicitly prove the bounded properties of existing deep denoisers due to complex network architectures.

Images captured in low-light environments suffer from serious degradation due to insufficient light, leading to the performance decline of industrial and civilian devices. To address the problems of noise, chromatic aberration, and detail distortion for enhancing low-light images using existing enhancement methods, this paper proposes an integrated learning approach (LightingNet) for low-light image enhancement. 

Reconstruction of CT images from a limited set of projections through an object is important in several applications ranging from medical imaging to industrial settings. As the number of available projections decreases, traditional reconstruction techniques such as the FDK algorithm and model-based iterative reconstruction methods perform poorly.

Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ( 2 and 1 regularization) and present novel stability results for p -regularized linear inverse problems for p(1,) . Our results guarantee Lipschitz continuity for small p and Hölder continuity for larger p . They generalize well to the Lp (Ω)  function spaces.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel