TIP Volume 31 | 2022

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2022

TIP Volume 31 | 2022

Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights.

Geometric partitioning has attracted increasing attention by its remarkable motion field description capability in the hybrid video coding framework. However, the existing geometric partitioning (GEO) scheme in Versatile Video Coding (VVC) causes a non-negligible burden for signaling the side information. Consequently, the coding efficiency is limited. In view of this, we propose a spatio-temporal correlation guided geometric partitioning (STGEO) scheme to efficiently describe the object information in the motion field of video coding.

Most existing trackers use bounding boxes for object tracking. However, the background contained in the bounding box inevitably decreases the accuracy of the target model, which affects the performance of the tracker and is particularly pronounced for non-rigid objects. To address the above issue, this paper proposes a novel hybrid level set model, which can robustly address the issue of topology changing, occlusions and abrupt motion in non-rigid object tracking by accurately tracking the object contour. 

Multi-view clustering aims at simultaneously obtaining a consensus underlying subspace across multiple views and conducting clustering on the learned consensus subspace, which has gained a variety of interest in image processing. In this paper, we propose the Semi-supervised Structured Subspace Learning algorithm for clustering data points from Multiple sources (SSSL-M). We explicitly extend the traditional multi-view clustering with a semi-supervised manner and then build an anti-block-diagonal indicator matrix with small amount of supervisory information to pursue the block-diagonal structure of the shared affinity matrix. 

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel