Semantic-Driven Interpretable Deep Multi-Modal Hashing for Large-Scale Multimedia Retrieval
Multi-modal hashing focuses on fusing different modalities and exploring the complementarity of heterogeneous multi-modal data for compact hash learning. However, existing multi-modal hashing methods still suffer from several problems, including: 1) Almost all existing methods generate unexplainable hash codes. They roughly assume that the contribution of each hash code bit to the retrieval results is the same, ignoring the discriminative information embedded in hash learning and semantic similarity in hash retrieval.