TMM Featured Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

TMM Featured Articles

The video captioning task aims to describe video content using several natural-language sentences. Although one-step encoder-decoder models have achieved promising progress, the generations always involve many errors, which are mainly caused by the large semantic gap between the visual domain and the language domain and by the difficulty in long-sequence generation.

The prevailing use of both images and text to express opinions on the web leads to the need for multimodal sentiment recognition. Some commonly used social media data containing short text and few images, such as tweets and product reviews, have been well studied. However, it is still challenging to predict the readers’ sentiment after reading online news articles, since news articles often have more complicated structures, e.g., longer text and more images.

Recently, dense video captioning has made attractive progress in detecting and captioning all events in a long untrimmed video. Despite promising results were achieved, most existing methods do not sufficiently explore the scene evolution within an event temporal proposal for captioning, and therefore perform less satisfactorily when the scenes and objects change over a relatively long proposal. To address this problem, we propose a graph-based partition-and-summarization (GPaS) framework for dense video captioning within two stages.

Benefiting from the powerful discriminative feature learning capability of convolutional neural networks (CNNs), deep learning techniques have achieved remarkable performance improvement for the task of salient object detection (SOD) in recent years.

While current research on multimedia is essentially dealing with the information derived from our observations of the world, internal activities inside human brains, such as imaginations and memories of past events etc., could become a brand new concept of multimedia, for which we coin as “brain-media”.

JPEG lossy image compression is a still image compression algorithm model that is currently widely used in major network media. However, it is unsatisfactory in the quality of compressed images at low bit rates. The objective of this paper is to improve the quality of compressed images and suppress blocking artifacts by improving the JPEG image compression model at low bit rates.

We have recently seen great progress in image classification due to the success of deep convolutional neural networks and the availability of large-scale datasets. Most of the existing work focuses on single-label image classification. However, there are usually multiple tags associated with an image. The existing works on multi-label classification are mainly based on lab curated labels.

Generating images via a generative adversarial network (GAN) has attracted much attention recently. However, most of the existing GAN-based methods can only produce low-resolution images of limited quality. Directly generating high-resolution images using GANs is nontrivial, and often produces problematic images with incomplete objects.

The scalable video coding extensions of the High Efficient Video Coding (HEVC) standard (SHVC) have adopted a new quadtree-structured coding unit (CU). The SHVC test model (SHM) needs to test seven intermode sizes and one intramode size at depth levels of “0,” “1,” “2,” and four intermode sizes and two intramode sizes at a depth level of “3” for interframe CUs.

Using deep convolutional neural networks (CNN) to predict the depth from a single image has received considerable attention in recent years due to its impressive performance. However, existing methods process each single image independently without leveraging the multiview information of video sequences in practical scenarios.

Pages

SPS on Twitter

  • SPS WEBINAR: Join us on Tuesday, 2 August for a new SPS Webinar, when Dr. Yue Li presents "Learning a Convolutional… https://t.co/Eps90ySYzq
  • Registration for ICIP 2021 is now open! This hybrid event will take place 19-22 September, with the in-person compo… https://t.co/s3kiGP4EPh
  • The Brain Space Initiative Talk Series continues on Friday, 30 July when Dr. Ioulia Kovelman presents "The Bilingua… https://t.co/6EqwqmBD0Q
  • There’s still time to register your team to win the US$5,000 grand prize in the 5-Minute Video Clip Contest, “Autom… https://t.co/76kh4jeL6i
  • Join the SPS Vizag Bay, Long Island, and Finland Chapters for the Seasonal School on Signal Processing and Communic… https://t.co/l04xac8qP5

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar