TMM Featured Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

TMM Featured Articles

With the rapid popularization of mobile intelligent terminals, mobile video and cloud services applications are widely used in people's lives. However, the resource-constrained characteristic of the terminals and the enormous amount of video information make the efficient terminal-to-cloud data upload a challenge.

Multimedia streams consume a significant chunk of the consumer Internet traffic exchanged and will continue to do so due to the ever-increasing connection among people, businesses, and industries. To cope with the deviation of the Internet's intended use, unreliable underlying infrastructure, and best effort protocols while leveraging existing technologies...

The saliency detection technologies are very useful to analyze and extract important information from given multimedia data, and have already been extensively used in many multimedia applications. Past studies have revealed that utilizing the global cues is effective in saliency detection. Nevertheless, most of prior works mainly considered the single-scale segmentation when the global cues are employed. In this paper, we attempt to incorporate the multi-scale global cues for saliency detection problem. 

With the development of video coding technology, high-efficiency video coding (HEVC) has become a promising alternative, compared with the previous coding standards, for example, H.264. In general, H.264 to HEVC transcoding can be accomplished by fully H.264 decoding and fully HEVC encoding, which suffers from considerable time consumption on the brute-force search of the HEVC coding tree unit (CTU) partition for rate-distortion optimization (RDO).

Predicting articulatory movements from audio or text has diverse applications, such as speech visualization. Various approaches have been proposed to solve the acoustic-articulatory mapping problem. However, their precision is not high enough with only acoustic features available. Recently, deep neural network (DNN) has brought tremendous success in various fields, like speech recognition and image processing.

We propose a novel technique for steganography on 3-D meshes so as to resist steganalysis. The majority of existing methods modulate vertex coordinates to embed messages in a nonadaptive way. We take account of complexity of local regions as joint distortion of a triple unit (vertice) and coding method such as syndrome trellis codes to adaptively embed messages, which owns stronger security with respect to existing steganalysis.

In general, low-rank representation (LRR) aims to find the lowest rank representation with respect to a dictionary. In fact, the dictionary is a key aspect of low-rank representation. However, a lot of low-rank representation methods usually use the data itself as a dictionary (i.e., a fixed dictionary), which may degrade their performances due to the lack of clustering ability of a fixed dictionary.

The partition algorithm as a digital image processing technique is significant to many applications, such as data encryption, image denoising, and 3-D reconstruction. In order to achieve well partition that can availably reduce the distortion phenomenon, a novel approach named image adaptive triangular partition (IATP) is proposed, which considers the grayscale distribution of the image and removes...

The problem of authenticating a re-sampled image has been investigated over many years. Currently, however, little research proposes a statistical model-based test, resulting in that statistical performance of the resampling detector could not be completely analyzed. To fill the gap, we utilize a parametric model to expose the traces of resampling forgery, which is described with the distribution of residual noise.

Correlation filters (CFs) have been extensively used in tracking tasks due to their high efficiency although most of them regard the tracked target as a whole and are minimally effective in handling partial occlusion. In this study, we incorporate a part-based strategy into the framework of CFs and propose a novel multipart correlation tracker with triangle-structure constraints. Specifically, we train multiple CFs for the global object and local parts, which are then jointly applied to obtain the correlation response of any candidate during tracking.

Pages

SPS on Twitter

  • THIS FRIDAY: Join our Vice President-Membership, K.V.S. Hari, and Membership Development Committee Chair, Arash Moh… https://t.co/rGSzhHAwgM
  • The SPACE webinar series continues tomorrow, Tuesday, 11 August at 11 AM ET with Dr. Xiao Xiang Zhu presenting "Dat… https://t.co/X5oz4KiJwX
  • now accepting submissions for special sessions, tutorials, and papers! The conference is set for June 2… https://t.co/sB3o5ItL0j
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting papers for a Special I… https://t.co/2SJwqj7aDB
  • NEW WEBINAR: Join us on Friday, 14 August at 11:00 AM ET for the 2021 SPS Membership Preview! Society leadership wi… https://t.co/1PLaZIt2VQ

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar