Bayesian DeNet: Monocular Depth Prediction and Frame-Wise Fusion With Synchronized Uncertainty

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Bayesian DeNet: Monocular Depth Prediction and Frame-Wise Fusion With Synchronized Uncertainty

Xin Yang; Yang Gao; Hongcheng Luo; Chunyuan Liao; Kwang-Ting Cheng

Using deep convolutional neural networks (CNN) to predict the depth from a single image has received considerable attention in recent years due to its impressive performance. However, existing methods process each single image independently without leveraging the multiview information of video sequences in practical scenarios. Properly taking into account multiview information in video sequences beyond individual frames could offer considerable benefits in terms of depth prediction accuracy and robustness. In addition, a meaningful measure of prediction uncertainty is essential for decision making, which is not provided in existing methods. This paper presents a novel video-based depth prediction system based on a monocular camera, named Bayesian DeNet . Specifically, Bayesian DeNet consists of a 59-layer CNN that can concurrently output a depth map and an uncertainty map for each video frame. Each pixel in an uncertainty map indicates the error variance of the corresponding depth estimate. Depth estimates and uncertainties of previous frames are propagated to the current frame based on the tracked camera pose, yielding multiple depth/uncertainty hypotheses for the current frame which are then fused in a Bayesian inference framework for greater accuracy and robustness. Extensive exper-iments on three public datasets demonstrate that our Bayesian DeNet outperforms the state-of-the-art methods for monocular depth prediction. A demo video and code are publicly available.

SPS on Twitter

  • RT : Call for Short Course proposals! in collaboration with the Education Board is planning education…
  • This Wednesday, join the Information Forensics and Security Technical Committee Webinar Series when Dr. Richard Heu…
  • Our Biomedical Imaging and Signal Processing Webinar Series continues on Tuesday, 5 July when Michael Unser present…
  • Join us TODAY at 11:00 AM ET when the Brain Space Initiative Talk Series continues with Dr. Tianming Liu presenting…
  • Our 75th anniversary is approaching in 2023, and we're celebrating with a Special Issue of IEEE Signal Processing M…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar