Adversarial Learning for Personalized Tag Recommendation

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Adversarial Learning for Personalized Tag Recommendation

Erik Quintanilla; Yogesh Rawat; Andrey Sakryukin; Mubarak Shah; Mohan Kankanhalli

We have recently seen great progress in image classification due to the success of deep convolutional neural networks and the availability of large-scale datasets. Most of the existing work focuses on single-label image classification. However, there are usually multiple tags associated with an image. The existing works on multi-label classification are mainly based on lab curated labels. Humans assign tags to their images differently, which is mainly based on their interests and personal tagging behavior. In this paper, we address the problem of personalized tag recommendation and propose an end-to-end deep network which can be trained on large-scale datasets. The user-preference is learned within the network in an unsupervised way where the network performs joint optimization for user-preference and visual encoding. A joint training of user-preference and visual encoding allows the network to efficiently integrate the visual preference with tagging behavior for a better user recommendation. In addition, we propose the use of adversarial learning, which enforces the network to predict tags resembling user-generated tags. We demonstrate the effectiveness of the proposed model on two different large-scale and publicly available datasets, YFCC100 M and NUS-WIDE. The proposed method achieves significantly better performance on both the datasets when compared to the baselines and other state-of-the-art methods. The code is publicly available at

SPS on Twitter

  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now accepting papers for a Special Iss…
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting submissions for a Spec…
  • The SPACE Webinar Series continues Tuesday, 6 April at 10:00 AM EDT when Dr. Ivan Dokmanić presents "Learning the G…
  • NEW SPS WEBINAR: Join us on Wednesday, 28 April at 1:00 PM EDT when Dr. Fernando Gama presents "Graph Neural Networ…
  • The 2021 IEEE International Workshop on Machine Learning for Signal Processing Data Challenge is now live! The L3DA…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar