The Signal Processing (SP) research group at the Universität Hamburg in Germany is hiring a Postdoc (E13/E14) "Machine Learning for Speech and Audio Processing".
Lecture Date: August 10, 2021 -- Virtual Lecture
Chapter: Hyderabad Chapter
Chapter Chair: Abhinav Kumar
Topic: Random Walk on a Tree for Stochastic Optimization and Learning
July, 2021-Postpone of the Workshop IEEE CAMSAP2021 and Approval of the Workshop IEEE SAM2022
by Xiangrong Wang and Wei Liu
Due to uncertainty generated by the pandemic, the Ninth IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2021) has been postponed to 2023.
As approved by the SAM TC, the Twelfth IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM2022) will be held at Trondheim, Norway, on 20-23 June 2022 (the dates are subject to change).
This paper investigates an intelligent reflecting surface (IRS) assisted simultaneous wireless information and power transfer (SWIPT) system. Multiple IRSs deployed on unmanned aerial vehicles (UAVs) and ground building are considered in the proposed system for enhancing transmission of information and energy simultaneously. The optimization problem is formulated to maximize the average achievable rate over N time slots by jointly optimizing power splitting (PS) ratio, transmit beamforming, phase shifts and trajectories of UAVs.
Edge networks offer a promising solution for satisfying the increasing energy and computation needs of user devices with new data intensive services. A mutil-access edge computing (MEC) system with collocated MEC servers and base-stations/access points (BS/AP) has the ability to support multiple users for both data computation and wireless charging. We propose an integrated solution for wireless charging with computation offloading to satisfy the largest feasible proportion of requested wireless charging while keeping the total energy consumption at the minimum, subject to the MEC-AP transmit power and latency constraints.
In the era of big data, profitable opportunities are becoming available for many applications. As the amount of data keeps increasing, machine learning becomes an attractive tool to analyze the information acquired. However, harnessing meaningful data remains a challenge. The machine learning tools employed in many applications apply all training data without taking into consideration how relevant are some of them. In this paper, we propose a data selection strategy for the training step of Neural Networks to obtain the most significant data information and improve algorithm performance during training.
The end users’ satisfactory Quality of Experience (QoE) is a fundamental criterion for networked video service providers such as video-on-demand providers (Netflix, YouTube, etc.), cloud gaming providers (Google Stadia, PlayStation Now, etc.) and videoconferencing providers (Zoom, Microsoft Teams, etc.). To know the QoE, providers today typically predict it from the Quality of Service (QoS) parameters or the client-side's actual QoE metrics measured at the current time-step.
Congruent Procrustes analysis aims to find the best matching between two point sets through rotation, reflection and translation. We formulate the Procrustes problem for hyperbolic spaces, review the canonical definition of the center mass for a point set, and give a closed-form solution for the optimal isometry between noise-free point sets. Our algorithm is analogous to the Euclidean Procrustes analysis, with centering and rotation replaced by their hyperbolic counterparts.
Cross Z-complementary pairs (CZCPs) are a special kind of Z-complementary pairs having zero autocorrelation sums around the in-phase position and end-shift position, also having zero cross-correlation sums around the end-shift position. Recent results have shown that CZCPs are very efficient in designing pilot sequences for spatial modulation enabled multiple-input multiple-output (MIMO) systems. In this paper, we propose systematic constructions of binary and quadriphase CZCPs with new lengths of the form 2M, where even-length binary Z-complementary pairs of length M exists.