IEEE Transactions on Information Forensics and Security

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

In this paper, a cyber-physical system (CPS) is considered, whose state estimation is done by a central controller (CC) using the measurements received from a wireless powered sensor network (WPSN) over fading channels. An adversary injects false data in this system by compromising some of the idle sensor nodes (SNs) of the WPSN. Using the WPSN for transmitting supervision and control data, in the aforementioned setting, makes the CPS vulnerable to both error and false data injection (FDI). 

In this study, we propose a neural network-based face anti-spoofing algorithm using dual pixel (DP) sensor images. The proposed algorithm has two stages: depth reconstruction and depth classification. The first network takes a DP image pair as input and generates a depth map with a baseline of approximately 1 mm. Then, the classification network is trained to distinguish real individuals and planar attack shapes to produce a binary output.

Anonymous authentication (AA) schemes are used by an application provider to grant services to its n users for pre-defined k times after they have authenticated themselves anonymously. These privacy-preserving cryptographic schemes are essentially based on the secret key that is embedded in a trusted platform module (TPM).

This article proposes an algorithm which allows Alice to simulate the game played between her and Eve. Under the condition that the set of detectors that Alice assumes Eve to have is sufficiently rich (e.g. CNNs), and that she has an algorithm enabling to avoid detection by a single classifier (e.g adversarial embedding, gibbs sampler, dynamic STCs), the proposed algorithm converges to an efficient steganographic algorithm.

Recent years have witnessed the proliferation of the deployment of virtualization techniques. Virtualization is designed to be transparent, that is, unprivileged users should not be able to detect whether a system is virtualized. Such detection can result in serious security threats such as evading virtual machine (VM)-based malware dynamic analysis and exploiting vulnerabilities for cross-VM attacks.

The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets.

Modern System-on-Chip (SoC) designs integrate a number of third party IPs (3PIPs) that coordinate and communicate through a Network-on-Chip (NoC) fabric to realize system functionality. An important class of SoC security attack involves a rogue IP tampering with the inter-IP communication.

Android inter-app communication (IAC) allows apps to request functionalities from other apps, which has been extensively used to provide a better user experience. However, IAC has also become an enticing target by attackers to launch malicious activities.

In this paper, we investigate beamforming design for cooperative secure transmission in cognitive two-way relay networks, where the cognitive transmitter (CT) with multiple antennas helps to forward the signals of two primary transmitters (PTs) and tries to protect the PTs from wiretapping by a single-antenna eavesdropper. 

We consider a decentralized detection network whose aim is to infer a public hypothesis of interest. However, the raw sensor observations also allow the fusion center to infer private hypotheses that we wish to protect. We consider the case where there are an uncountable number of private hypotheses belonging to an uncertainty set, and develop local privacy mappings at every sensor so that the sanitized sensor information minimizes the Bayes error of detecting the public hypothesis at the fusion center while achieving information privacy for all private hypotheses. 

Pages

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar