IEEE Transactions on Information Forensics and Security

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Near-InfraRed and VISual (NIR-VIS) face matching, as one of the most representative tasks in Heterogeneous Face Recognition (HFR), aims at retrieving a face image across different domains. With the development of deep learning and the growing demand for intelligent surveillance, it has aroused more and more research attention in the computer vision community.

With the wide use of smartphones, more private data are collected and saved in the smartphones. This raises higher requirements for secure and effective user authentication scheme. Continuous authentication leverages behavioral biometrics as identity information and shows promising characteristics for user verification in a continuous and passive means.

Iris pattern recognition has significantly improved the biometric authentication field due to its high stability and uniqueness. Such physical characteristics have played an essential role in security applications and other related areas. However, presentation attacks, also known as spoofing techniques, can bypass biometric authentication systems using artefacts such as printed images, artificial eyes, textured contact lenses, etc. Many liveness detection methods that improve the robustness of these systems have been proposed. The first International Iris Liveness Detection competition, where the effectiveness of liveness detection methods is evaluated, was first launched in 2013, and its latest iteration was held in 2020.

We present Poligraph, an intrusion-tolerant and decentralized fake news detection system. Poligraph aims to address architectural, system, technical, and social challenges of building a practical, long-term fake news detection platform. We first conduct a case study for fake news detection at authors’ institute, showing that machine learning-based reviews are less accurate but timely, while human reviews, in particular, experts reviews, are more accurate but time-consuming. 

In this paper, we develop a framework against inference attacks aimed at inferring the values of the controller gains of an active steering control system (ASCS). We first show that an adversary with access to the shared information by a vehicle, via a vehicular ad hoc network (VANET), can reliably infer the values of the controller gains of an ASCS. This vulnerability may expose the driver as well as the manufacturer of the ASCS to severe financial and safety risks. 

Privacy-preserving techniques for processing sets of information have attracted the research community’s attention in recent years due to society’s increasing dependency on the availability of data at any time. One of the fundamental problems in set operations is known as Private Set Intersection (PSI). The problem requires two parties to compute the intersection between their sets while preserving correctness and privacy. Although several efficient two-party PSI protocols already exist, protocols for PSI in the multi-party setting (MPSI) currently scale poorly with a growing number of parties, even though this applies to many real-life scenarios. 

Password strength meters (PSMs) are being widely used, but they often give conflicting, inaccurate and misleading feedback, which defeats their purpose. Except for fuzzyPSM, all PSMs assume passwords are newly constructed, which is not true in reality. FuzzyPSM considers password reuse, six major leet transformations and initial capitalization, and performs the best as evaluated by Golla and Dürmuth at ACM CCS’18. On the basis of fuzzyPSM, we propose a new PSM based on R euse, L eet and S eparation, namely RLS-PSM.

This paper presents a signal processing and machine learning (ML) based methodology to leverage Electromagnetic (EM) emissions from an embedded device to remotely detect a malicious application running on the device and classify the application into a malware family. We develop Fast Fourier Transform (FFT) based feature extraction followed by Support Vector Machine (SVM) and Random Forest (RF) based ML models to detect a malware. We further propose methods to learn characteristic behavior of different malwares from EM traces to reveal similarities to known malware families and improve efficiency of malware analysis.

Record linkage is the challenging task of deciding which records, coming from disparate data sources, refer to the same entity. Established back in 1946 by Halbert L. Dunn, the area of record linkage has received tremendous attention over the years due to its numerous real-world applications, and has led to a plethora of technologies, methods, metrics, and systems.

Machine learning techniques have been widely applied to various applications. However, they are potentially vulnerable to data poisoning attacks, where sophisticated attackers can disrupt the learning procedure by injecting a fraction of malicious samples into the training dataset. Existing defense techniques against poisoning attacks are largely attack-specific: they are designed for one specific type of attacks but do not work for other types, mainly due to the distinct principles they follow.

Pages

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar