TSP Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

TSP Articles

TSP Articles

In this manuscript, we propose to use a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator. The variational autoencoder models the underlying unknown data distribution as conditionally Gaussian, yielding the conditional first and second moments of the estimand, given a noisy observation.

The modeling of time-varying graph signals as stationary time-vertex stochastic processes permits the inference of missing signal values by efficiently employing the correlation patterns of the process across different graph nodes and time instants. In this study, we propose an algorithm for computing graph autoregressive moving average (graph ARMA) processes based on learning the joint time-vertex power spectral density of the process from its incomplete realizations for the task of signal interpolation. 

Conventional beamforming methods for intelligent reflecting surfaces (IRSs) or reconfigurable intelligent surfaces (RISs) typically entail the full channel state information (CSI). However, the computational cost of channel acquisition soars exponentially with the number of IRSs. To bypass this difficulty, we propose a novel strategy called blind beamforming that coordinates multiple IRSs by means of statistics without knowing CSI.

Algorithmic solutions for multi-object tracking (MOT) are a key enabler for applications in autonomous navigation and applied ocean sciences. State-of-the-art MOT methods fully rely on a statistical model and typically use preprocessed sensor data as measurements. In particular, measurements are produced by a detector that extracts potential object locations from the raw sensor data collected at discrete time steps. This preparatory processing step reduces data flow and computational complexity but may result in a loss of information. 

This paper proposes an interpretable ensembled seizure detection procedure using electroencephalography (EEG) data, which integrates data driven features and clinical knowledge while being robust against artifacts interference.

This paper deals with joint adaptive radar detection and target bearing estimation in the presence of mutual coupling among the array elements. First of all, a suitable model of the signal received by the multichannel radar is developed via a linearization procedure of the Uniform Linear Array (ULA) manifold around the nominal array looking direction together with the use of symmetric Toeplitz structured matrices to represent the mutual coupling effects. Hence, the Generalized Likelihood Ratio Test (GLRT) detector is evaluated under the assumption of homogeneous radar environment.

In the second part of the series papers, we set out to study the algorithmic efficiency of sparsity-constrained sensing. Stemmed from co-prime sampling/array, we propose a generalized framework, termed Diophantine sensing, which utilizes generic Diophantine equation theory and higher-order sparse ruler to strengthen the sampling time (delay), the degree of freedom (DoF), and the sampling sparsity, simultaneously. It is well known that co-prime sensing can reconstruct the autocorrelation of a sequence with significantly more lags based on Bézout theorem.

This paper considers the problem of outlier censoring from secondary data, where the number, amplitude and location of outliers is unknown. To this end, a novel sparse recovery technique based on joint block sparse learning via iterative minimization (BSLIM) and model order selection (MOS), called JBM, is proposed which exploits the inherent sparse nature of the outliers in homogeneous background. The cost function proposed here, unlike many similar works in this field, does not require a dictionary matrix.

In this paper, new results in random matrix theory are derived, which allow us to construct a shrinkage estimator of the global minimum variance (GMV) portfolio when the shrinkage target is a random object. More specifically, the shrinkage target is determined as the holding portfolio estimated from previous data. The theoretical findings are applied to develop theory for dynamic estimation of the GMV portfolio, where the new estimator of its weights is shrunk to the holding portfolio at each time of reconstruction. 

In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel