Skip to main content

TSP Article

Convergence Analysis of Gaussian Belief Propagation Under High-Order Factorization and Asynchronous Scheduling

It is well known that the convergence of Gaussian belief propagation (BP) is not guaranteed in loopy graphs. The classical convergence conditions, including diagonal dominance, walk-summability, and convex decomposition, are derived under pairwise factorizations of the joint Gaussian distribution. However, many applications run Gaussian BP under high-order factorizations, making the classical results not applicable.

Read more

Spike Estimation From Fluorescence Signals Using High-Resolution Property of Group Delay

Spike estimation from calcium (Ca 2+ ) fluorescence signals is a fundamental and challenging problem in neuroscience. Several models and algorithms have been proposed for this task over the past decade. Nevertheless, it is still hard to achieve accurate spike positions from the Ca 2+ fluorescence signals. While existing methods rely on data-driven methods and the physiology of neurons for modeling the spiking process, this paper exploits the nature of the fluorescence responses to spikes using signal processing.

Read more

Random Node-Asynchronous Updates on Graphs

This paper introduces a node-asynchronous communication protocol in which an agent in a network wakes up randomly and independently, collects states of its neighbors, updates its own state, and then broadcasts back to its neighbors. This protocol differs from consensus algorithms and it allows distributed computation of an arbitrary eigenvector of the network, in which communication between agents is allowed to be directed.

Read more

Tight Performance Bounds for Compressed Sensing With Conventional and Group Sparsity

In this paper, we study the problem of recovering a group sparse vector from a small number of linear measurements. In the past, the common approach has been to use various “group sparsity-inducing” norms such as the Group LASSO norm for this purpose. By using the theory of convex relaxations, we show that it is also possible to use 1 -norm minimization for group sparse recovery.

Read more

Communication-Censored ADMM for Decentralized Consensus Optimization

In this paper, we devise a communication-efficient decentralized algorithm, named as communication-censored alternating direction method of multipliers (ADMM) (COCA), to solve a convex consensus optimization problem defined over a network. Similar to popular decentralized consensus optimization algorithms such as ADMM, at every iteration of COCA, a node exchanges its local variable with neighbors, and then updates its local variable according to the received neighboring variables and its local cost function. 

Read more

Source Resolvability of Spatial-Smoothing-Based Subspace Methods: A Hadamard Product Perspective

A major drawback of subspace methods for direction-of-arrival estimation is their poor performance in the presence of coherent sources. Spatial smoothing is a common solution that can be used to restore the performance of these methods in such a case at the cost of increased array size requirement. In this paper, a Hadamard product perspective of the source resolvability problem of spatial-smoothing-based subspace methods is presented.

Read more