Synthbuster: Towards Detection of Diffusion Model Generated Images

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Synthbuster: Towards Detection of Diffusion Model Generated Images

By: 
Quentin Bammey

Synthetically-generated images are getting increasingly popular. Diffusion models have advanced to the stage where even non-experts can generate photo-realistic images from a simple text prompt. They expand creative horizons but also open a Pandora's box of potential disinformation risks. In this context, the present corpus of synthetic image detection techniques, primarily focusing on older generative models like Generative Adversarial Networks, finds itself ill-equipped to deal with this emerging trend. Recognizing this challenge, we introduce a method specifically designed to detect synthetic images produced by diffusion models. Our approach capitalizes on the inherent frequency artefacts left behind during the diffusion process. Spectral analysis is used to highlight the artefacts in the Fourier transform of a residual image, which are used to distinguish real from fake images. The proposed method can detect diffusion-model-generated images even under mild jpeg compression, and generalizes relatively well to unknown models. By pioneering this novel approach, we aim to fortify forensic methodologies and ignite further research into the detection of AI-generated images.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel