IEEE OJSP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE OJSP Article

Beside the minimizationof the prediction error, two of the most desirable properties of a regression scheme are stability and interpretability . Driven by these principles, we propose continuous-domain formulations for one-dimensional regression problems. In our first approach, we use the Lipschitz constant as a regularizer, which results in an implicit tuning of the overall robustness of the learned mapping.

The objective of meta-learning is to exploit knowledge obtained from observed tasks to improve adaptation to unseen tasks. Meta-learners are able to generalize better when they are trained with a larger number of observed tasks and with a larger amount of data per task. Given the amount of resources that are needed, it is generally difficult to expect the tasks, their respective data, and the necessary computational capacity to be available at a single central location.

The fundamental task of classification given a limited number of training data samples is considered for physicalsystems with known parametric statistical models. The standalone learning-based and statistical model-based classifiers face major challenges towards the fulfillment of the classification task using a small training set. Specifically, classifiers that solely rely on the physics-based statistical models usually suffer from their inability to properly tune the underlying unobservable parameters, which leads to a mismatched representation of the system’s behaviors.

We develop a novel 2D functional learning framework that employs a sparsity-promoting regularization based on second-order derivatives. Motivated by the nature of the regularizer, we restrict the search space to the span of piecewise-linear box splines shifted on a 2D lattice. Our formulation of the infinite-dimensional problem on this search space allows us to recast it exactly as a finite-dimensional one that can be solved using standard methods in convex optimization.

The paper develops novel algorithms for time-varying (TV) sparse channel estimation in Massive multiple-input, multiple-output (MMIMO) systems. This is achieved by employing a novel reduced (non-uniformly spaced tap) delay-line equalizer, which can be related to low/reduced rank filters. This low rank filter is implemented by deriving an innovative TV (Krylov-space based) Multi-Stage Kalman Filter (MSKF), employing appropriate state estimation techniques.

The end users’ satisfactory Quality of Experience (QoE) is a fundamental criterion for networked video service providers such as video-on-demand providers (Netflix, YouTube, etc.), cloud gaming providers (Google Stadia, PlayStation Now, etc.) and videoconferencing providers (Zoom, Microsoft Teams, etc.). To know the QoE, providers today typically predict it from the Quality of Service (QoS) parameters or the client-side's actual QoE metrics measured at the current time-step.

In the era of big data, profitable opportunities are becoming available for many applications. As the amount of data keeps increasing, machine learning becomes an attractive tool to analyze the information acquired. However, harnessing meaningful data remains a challenge. The machine learning tools employed in many applications apply all training data without taking into consideration how relevant are some of them. In this paper, we propose a data selection strategy for the training step of Neural Networks to obtain the most significant data information and improve algorithm performance during training. 

Quadrature spatial modulation (QSM) isa recently proposed multiple-input multiple-output (MIMO) wireless transmission paradigm that has garnered considerable research interest owing to its relatively high spectral efficiency. QSM essentially enhances the spatial multiplexing gain while maintaining all the inherent advantages of spatial modulation (SM).

Identification of decompressed JPEG images, especially those compressed with high JPEG quality factors, is a challenging issue in image forensics. Furthermore, the applicability of the existing JPEG forensic detectors in forgery localization is limited by their inability to cope with spatial misalignment in the 8×8 JPEG grid.

This work exploits Riemannian manifolds to build a sequential-clustering framework able to address a wide variety of clustering tasks in dynamic multilayer (brain) networks via the information extracted from their nodal time-series. The discussion follows a bottom-up path, starting from feature extraction from time-series and reaching up to Riemannian manifolds (feature spaces) to address clustering tasks such as state clustering, community detection (a.k.a. network-topology identification), and subnetwork-sequence tracking. 

Pages

SPS on Twitter

  • CALL FOR PROPOSALS: The IEEE Workshop on Automatic Speech Recognition and Understanding is now soliciting proposals… https://t.co/gzYreLyroa
  • authors have started uploading their conference slides and posters to IEEE SPS SigPort! Get a sneak pea… https://t.co/XGvnfdrHIb
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is accepting papers for a Special Issue… https://t.co/E89M7bEFlu
  • Voting for the IEEE SPS 5-Minute Video Clip Contest is now live! Check out the three finalists and cast your vote f… https://t.co/fbqgHY1tw7
  • CALL FOR PROPOSALS: Now seeking proposals for the 2024 IEEE International Workshop on Machine Learning for Signal P… https://t.co/l7V1bF2qhT

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar