- Home
- Publications & Resources
- IEEE Signal Processing Magazine
CURRENT ISSUE
CURRENT ISSUE
November 2024
Special Issue on Model-Based and Data-Driven Audio Signal Processing
“All models are wrong, but some are useful” - understanding “models” as analytical mathematical models, this aphorism, originating from George Box in 1976, motivates the synthesis of model-based and data-driven audio signal processing as the leitmotif of this special issue.
An Exciting Juncture: The Convergence of Machine Learning and Signal Processing
This is our sixth and final issue of 2024. It is hard to believe that a year has gone by since our term as the new editorial team started in January. In our first year, in addition to our usual array of technical overviews and Society news, we addressed a number of topics of significance for our community in the hopes of starting a discussion.
September 2024
Multicarrier ISAC: Advances in waveform design, signal processing, and learning under nonidealities
This paper addresses the topic of integrated sensing and communications (ISAC) in 5G and emerging 6G wireless networks. ISAC systems operate within shared, congested or even contested spectrum, aiming to deliver high performance in both wireless communications and radio frequency (RF) sensing. The expected benefits include more efficient utilization of spectrum, power, hardware (HW) and antenna resources.
Sensing in Bistatic ISAC Systems With Clock Asynchronism: A signal processing perspective
Integrated Sensing And Communication (ISAC) has been identified as a pillar usage scenario for the impending 6G era. Bi-static sensing, a major type of sensing in ISAC, is promising to expedite ISAC in the near future, as it requires minimal changes to the existing network infrastructure. However, a critical challenge for bi-static sensing is clock asynchronism due to the use of different clocks at far-separated transmitters and receivers.
In-Band Full-Duplex Multiple-Input Multiple-Output Systems for Simultaneous Communications and Sensing: Challenges, methods, and future perspectives
In-band full-duplex (FD) multiple-input, multiple-output (MIMO) systems offer a significant opportunity for integrated sensing and communications (ISAC) due to their capability to realize simultaneous signal transmissions and receptions. This feature has been recently exploited to devise spectrum-efficient simultaneous information transmission and monostatic sensing operations, a line of research typically referred to as MIMO FD-ISAC.
