Education & Resources

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

News and Resources for Members of the IEEE Signal Processing Society

Education & Resources

Many important application domains generate distributed collections of heterogeneous local datasets. These local datasets are related via an intrinsic network structure that arises from domain-specific notions of similarity between local datasets. Networked federated learning aims at learning a tailored local model for each local dataset. 

X-ray security screening is widely utilized in aviation and transportation, and its importance has sparked interest in automated screening systems. The goal of this webinar is to explore computerized X-ray security imaging methods by classifying them into traditional machine learning and modern deep learning applications.

In his seminal paper, Dr. Ronald Mahler not only developed the Probability Hypothesis Density (PHD) filter, but also detailed the Random Finite Set (RFS) framework for multi-object systems. These complex dynamical systems, in which the number of objects and their states are unknown and vary randomly with time, have a wide range of applications from surveillance, computer vision, robotics to biomedical research.

Sound field estimation using a microphone array is a fundamental problem in acoustic signal processing, which has a wide variety of applications, such as visualization/auralization of an acoustic field, spatial audio reproduction using a loudspeaker array or headphones, and active noise cancellation in a spatial region.

As a popular signal modeling technique, sparse representation (SR) has achieved great success in image fusion during the last decade. However, due to the patch-based manner adopted in standard SR models, most existing SR-based image fusion methods suffer from two drawbacks, namely, limited ability in detail preservation and high sensitivity to mis-registration, while these two issues are of great concern in image fusion. 

This article lists all of the 2021 and 2020 SPS Educational webinars that have been conducted and have been made available on the SPS Resource Center.

Data Competitions are a great way to engage the global technical community to provide insight and analysis on your research data. IEEE DataPort is holding its inaugural Data Competition contest. As part of the contest, IEEE DataPort will select three Data Competitions to sponsor, providing $5000 in cash prizes for the winners of the three selected Data Competitions.

Adaptive (i.e., data-driven) methods have become very popular these last decades. Among the existing techniques, the empirical mode decomposition has proven to be very efficient in extracting accurate time-frequency information from non-stationary signals.

This webinar will demonstrate how deep learning can solve difficult communication problems that prior approaches often fail with two case studies. The first half will discuss a novel iterative BP-CNN architecture for channel decoding under correlated noise. This architecture concatenates a trained convolutional neural network (CNN) with a standard belief-propagation (BP) decoder. 

We study the dual problem of image super-resolution (SR), which we term image compact-resolution (CR). Opposite to image SR that hallucinates a visually plausible high-resolution image given a low-resolution input, image CR provides a low-resolution version of a high-resolution image, such that the low-resolution version is both visually pleasing and as informative as possible compared to the high-resolution image. 

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel