The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
In multi-view subspace clustering, the low-rankness of the stacked self-representation tensor is widely accepted to capture the high-order cross-view correlation. However, using the nuclear norm as a convex surrogate of the rank function, the self-representation tensor exhibits strong connectivity with dense coefficients. When noise exists in the data, the generated affinity matrix may be unreliable for subspace clustering as it retains the connections across inter-cluster samples due to the lack of sparsity. Since both the connectivity and sparsity of the self-representation coefficients are curial for subspace clustering, we propose a Reliable Multi-View Affinity Learning (RMVAL) method so as to optimize both properties in a single model. Specifically, RMVAL employs the low-rank tensor constraint to yield a well-connected yet dense solution, and purifies the densely connected self-representation tensor by preserving only the connections in local neighborhoods using the
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.