Skip to main content

Decentralized Federated Reinforcement Learning for User-Centric Dynamic TFDD Control

The explosive growth of dynamic and heterogeneous data traffic brings great challenges for 5G and beyond mobile networks. To enhance the network capacity and reliability, we propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme that adaptively allocates the uplink and downlink time-frequency resources of base stations (BSs) to meet the asymmetric and heterogeneous traffic demands while alleviating the inter-cell interference. 

Edge Learning for B5G Networks With Distributed Signal Processing: Semantic Communication, Edge Computing, and Wireless Sensing

To process and transfer large amounts of data in emerging wireless services, it has become increasingly appealing to exploit distributed data communication and learning. Specifically, edge learning (EL) enables local model training on geographically disperse edge nodes and minimizes the need for frequent data exchange.