Skip to main content

A Guide to Computational Reproducibility in Signal Processing and Machine Learning

A computational experiment is deemed reproducible if the same data and methods are available to replicate quantitative results by any independent researcher, anywhere and at any time, granted that they have the required computing power. Such computational reproducibility is a growing challenge that has been extensively studied among computational researchers as well as within the signal processing and machine learning research community.

Physics-Guided Terahertz Computational Imaging: A tutorial on state-of-the-art techniques

Visualizing information inside objects is an everlasting need to bridge the world from physics, chemistry, and biology to computation. Among all tomographic techniques, terahertz (THz) computational imaging has demonstrated its unique sensing features to digitalize multidimensional object information in a nondestructive, nonionizing, and noninvasive way.

Physics-Embedded Machine Learning for Electromagnetic Data Imaging: Examining three types of data-driven imaging methods

Electromagnetic (EM) imaging is widely applied in sensing for security, biomedicine, geophysics, and various industries. It is an ill-posed inverse problem whose solution is usually computationally expensive. Machine learning (ML) techniques and especially deep learning (DL) show potential in fast and accurate imaging. However, the high performance of purely data-driven approaches relies on constructing a training set that is statistically consistent with practical scenarios, which is often not possible in EM-imaging tasks. Consequently, generalizability becomes a major concern.

Physics-Driven Machine Learning for Computational Imaging: Part 2

Thanks to the tremendous interest from the research community, the focus of the March issue of the IEEE Signal Processing Magazine is on the second volume of the special issue on physics-driven machine learning for computational imaging, which brings together nine articles of the 19 accepted papers from the original 47 submissions.

Reaching Out to Members in the Middle East and India

As I am writing this article, I am wrapping up a trip as IEEE Signal Processing Society (SPS) president to Doha, Qatar (9–11 January), to speak at the 2022 IEEE Spoken Language Technology (SLT) Workshop, and India (12–16 January), for technical talks and meetings with local signal processing researchers and SPS local Chapter chairs.

PhD Position in Adaptive Deep Learning for Speech and Language

The LivePerson Centre for Speech and Language offers a 3 year fully funded PhD studentship
covering standard maintenance, fees and travel support, to work on deep neural network adaptive
learning modules for speech and language. The Centre is connected with the Speech and Hearing
(SpandH) and the Natural Language Processing (NLP) research groups at the Department of
Computer Science at the University of Sheffield.