IEEE JSTSP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE JSTSP Article

Recently, self-supervised learning (SSL) from unlabelled speech data has gained increased attention in the automatic speech recognition (ASR) community. Typical SSL methods include autoregressive predictive coding (APC), Wav2vec2.0, and hidden unit BERT (HuBERT). However, SSL models are biased to the pretraining data. When SSL models are finetuned with data from another domain, domain shifting occurs and might cause limited knowledge transfer for downstream tasks.

Speech self-supervised learning has attracted much attention due to its promising performance in multiple downstream tasks, and has become a new growth engine for speech recognition in low-resource languages. In this paper, we exploit and analyze a series of wav2vec pre-trained models for speech recognition in 15 low-resource languages in the OpenASR21 Challenge.

Although supervised deep learning has revolutionized speech and audio processing, it has necessitated the building of specialist models for individual tasks and application scenarios. It is likewise difficult to apply this to dialects and languages for which only limited labeled data is available. Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains. 

Although supervised deep learning has revolutionized speech and audio processing, it has necessitated the building of specialist models for individual tasks and application scenarios. It is likewise difficult to apply this to dialects and languages for which only limited labeled data is available. Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains. 

The papers in this special section focus on self-supervised learning for speech and audio processing. A current trend in the machine learning community is the adoption of self-supervised approaches to pretrain deep networks. Self-supervised learning utilizes proxy-supervised learning tasks (or pretext tasks) - for example, distinguishing parts of the input signal from distractors or reconstructing masked input segments conditioned on unmasked segments—to obtain training data from unlabeled corpora. 

Edge networks offer a promising solution for satisfying the increasing energy and computation needs of user devices with new data intensive services. A mutil-access edge computing (MEC) system with collocated MEC servers and base-stations/access points (BS/AP) has the ability to support multiple users for both data computation and wireless charging. We propose an integrated solution for wireless charging with computation offloading to satisfy the largest feasible proportion of requested wireless charging while keeping the total energy consumption at the minimum, subject to the MEC-AP transmit power and latency constraints. 

This paper investigates an intelligent reflecting surface (IRS) assisted simultaneous wireless information and power transfer (SWIPT) system. Multiple IRSs deployed on unmanned aerial vehicles (UAVs) and ground building are considered in the proposed system for enhancing transmission of information and energy simultaneously. The optimization problem is formulated to maximize the average achievable rate over N time slots by jointly optimizing power splitting (PS) ratio, transmit beamforming, phase shifts and trajectories of UAVs.

The papers in this special section focuses on signal processing advances in wireless transmission of power and information. Wireless power transfer (WPT) and wireless information and power transfer (WIPT) have received growing attention in the research community in the past few years. In this special issue, a total of fourteen papers present state-of-the-art results in the broad area of wireless transmission of information and power with a special emphasis on signal processing advances.

Automotive imaging radars require high angular resolution which can be achieved by a large antenna aperture. In order to obey Nyquist spatial sampling rate, a large number of array elements and receive channels is required. In practice, this solution results in a prohibitively high cost and complexity. 

We propose a high-resolution imaging radar system to enable high-fidelity four-dimensional (4D) sensing for autonomous driving, i.e., range, Doppler, azimuth, and elevation, through a joint sparsity design in frequency spectrum and array configurations. To accommodate a high number of automotive radars operating at the same frequency band while avoiding mutual interference, random sparse step-frequency waveform (RSSFW) is proposed to synthesize a large effective bandwidth to achieve high range resolution profiles.

Pages

SPS on Twitter

  • New SPS Webinar: On 9 March, join Mr. Sayantan Dutta when he presents "Novel Prospects of Image Restoration Inspire… https://t.co/l2k1DhMac4
  • New SPS Webinar: On Wednesday, 8 February, join Dr. Roula Nassif for "Decentralized learning over multitask graphs"… https://t.co/GOgHb7vfAv
  • CALL FOR PAPERS: IEEE Signal Processing Magazine welcomes submissions for a Special Issue on Hypercomplex Signal an… https://t.co/UDvjUY2llT
  • New SPS Webinar: On 15 February, join Mr. Wei Liu, Dr. Li Chen and Dr. Wenyi Zhang presenting "Decentralized Federa… https://t.co/em0sQAK4V5
  • New SPS Webinar: On Monday, 13 February, join Dr. Joe (Zhou) Ren when he presents "Human Centric Visual Analysis -… https://t.co/Rc39HpkPKr

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar