Skip to main content

IEEE JSTSP Article

Editorial: Reconstruction of Audio From Incomplete or Highly Degraded Observations

The papers from this special section focus on the restoration of udio content, in particular speech and music from degraded observations. This is a challenging and long-standing problem in audio processing. In particular this holds for severe degradations and incomplete observations, which are regularly encountered in practice. The papers in this section have been organized to gather contributions that would serve both as a comprehensive primer on the stateof- the-art, and a showcase of current developments within the field.

Read more

Unsupervised Training of Denoisers for Low-Dose CT Reconstruction Without Full-Dose Ground Truth

Recently, deep neural network (DNN) based methods for low-dose CT have been investigated to achieve excellent performance in both image quality and computational speed. However, almost all methods using DNNs for low-dose CT require clean ground truth data with full radiation dose to train the DNNs. In this work, we attempt to train DNNs for low-dose CT reconstructions with reduced tube current by investigating unsupervised training of DNNs for denoising sensor measurements or sinograms without full-dose ground truth images.

Read more

RARE: Image Reconstruction Using Deep Priors Learned Without Groundtruth

Regularization by denoising (RED) is an image reconstruction framework that uses an image denoiser as a prior. Recent work has shown the state-of-the-art performance of RED with learned denoisers corresponding to pre-trained convolutional neural nets (CNNs). In this work, we propose to broaden the current denoiser-centric view of RED by considering priors corresponding to networks trained for more general artifact-removal.

Read more

Media Forensics and DeepFakes: An Overview

With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, and video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. 

Read more

Tiny-BDN: An Efficient and Compact Barcode Detection Network

This paper presents a novel approach for accurate barcodes detection in real and challenging environments using compact deep neural networks. Our approach is based on Convolutional Neural Network ( CNN ) and neural network compression, which can detect the four vertexes coordinates of a barcode accurately and quickly. Our approach consists of four stages: ( i ) feature extraction by a base network, ( ii ) region proposal network ( RPN ) training, ( iii ) barcode classification and coordinates regression, and ( iv ) weights pruning and recoding.

Read more

Impact of Synaptic Strength on Propagation of Asynchronous Spikes in Biologically Realistic Feed-Forward Neural Network

We consider the problem of reliable information propagation in the brain using biologically realistic models of spiking neurons. Biological neurons use action potentials, or spikes, to encode information. Information can be encoded by the rate of asynchronous spikes or by the (precise) timing of synchronous spikes. Reliable propagation of synchronous spikes is well understood in neuroscience and is relatively easy to implement by biologically-realistic models of neurons. 

Read more