IEEE JSTSP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE JSTSP Article

We propose a high-resolution imaging radar system to enable high-fidelity four-dimensional (4D) sensing for autonomous driving, i.e., range, Doppler, azimuth, and elevation, through a joint sparsity design in frequency spectrum and array configurations. To accommodate a high number of automotive radars operating at the same frequency band while avoiding mutual interference, random sparse step-frequency waveform (RSSFW) is proposed to synthesize a large effective bandwidth to achieve high range resolution profiles.

Automotive radar is used in many applications of advanced driver assistance systems and is considered as one of the key technologies for highly automated driving. An overview of state-of-the-art signal processing in automotive radar is presented along with current research directions and practical challenges.

Optimal rank selection is an important issue in tensor decomposition problems, especially for Tensor Train (TT) and Tensor Ring (TR) (also known as Tensor Chain) decompositions. In this paper, a new rank selection method for TR decomposition has been proposed for automatically finding near-optimal TR ranks, which result in a lower storage cost, especially for tensors with inexact TT or TR structures.

The emergence of big data and the multidimensional nature of wireless communication signals present significant opportunities for exploiting the versatility of tensor decompositions in associated data analysis and signal processing. The uniqueness of tensor decompositions, unlike matrix-based methods, can be guaranteed under very mild and natural conditions. 

The papers in this special section focus on tensor decomposition for signal processing and machine learning. Tensor decomposition, also called tensor factorization, is useful for representing and analyzing multi-dimensional data. Tensor decompositions have been applied in signal processing applications (speech, acoustics, communications, radar, biomedicine), machine learning (clustering, dimensionality reduction, latent factor models, subspace learning), and well beyond.

Image restoration remains a challenging task in image processing. Numerous methods tackle this problem, which is often solved by minimizing a nonsmooth penalized co-log-likelihood function. Although the solution is easily interpretable with theoretic guarantees, its estimation relies on an optimization process that can take time. Considering the research effort in deep learning for image classification and segmentation, this class of methods offers a serious alternative to perform image restoration but stays challenging to solve inverse problems.

Image restoration is a critical component of image processing pipelines and for low-level computer vision tasks. Conventional image restoration approaches are mostly based on hand-crafted image priors. The inter-channel correlation of color images is not fully exploited. Motivated by the special characteristics of the inter-channel correlation (higher correlation for red/green and green/blue channels than for red/blue) in color images and general characteristics (green channel always shows the best image quality among the three color components) of distorted color images, in this paper, a three-stage convolutional neural network (CNN) structure is proposed for color image restoration tasks.

The papers in this special issue focus on deep learning for image/video restoration and compression. The huge success of deep-learning–based approaches in computer vision has inspired research in learned solutions to classic image/video processing problems, such as denoising, deblurring, dehazing, deraining, super-resolution (SR), and compression. Hence, learning-based methods have emerged as a promising nonlinear signal-processing framework for image/ video restoration and compression.

The papers in this special issue focus on deep learning for image/video restoration and compression. The huge success of deep-learning–based approaches in computer vision has inspired research in learned solutions to classic image/video processing problems, such as denoising, deblurring, dehazing, deraining, super-resolution (SR), and compression. Hence, learning-based methods have emerged as a promising nonlinear signal-processing framework for image/ video restoration and compression.

Dynamic range limitations in signal processing often lead to clipping, or saturation, in signals. The task of audio declipping is estimating the original audio signal, given its clipped measurements, and has attracted much interest in recent years. Audio declipping algorithms often make assumptions about the underlying signal, such as sparsity or low-rankness, and about the measurement system.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel