Unsupervised Training of Denoisers for Low-Dose CT Reconstruction Without Full-Dose Ground Truth

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Unsupervised Training of Denoisers for Low-Dose CT Reconstruction Without Full-Dose Ground Truth

Kwanyoung Kim; Shakarim Soltanayev; Se Young Chun

Recently, deep neural network (DNN) based methods for low-dose CT have been investigated to achieve excellent performance in both image quality and computational speed. However, almost all methods using DNNs for low-dose CT require clean ground truth data with full radiation dose to train the DNNs. In this work, we attempt to train DNNs for low-dose CT reconstructions with reduced tube current by investigating unsupervised training of DNNs for denoising sensor measurements or sinograms without full-dose ground truth images. In other words, our proposed methods allow training of DNNs with only noisy low-dose CT measurements. First, the Poisson Unbiased Risk Estimator (PURE) is investigated to train a DNN for denoising CT measurements, and a method is proposed for reconstructing the CT image using filtered back-projection (FBP) and the DNN trained with PURE. Then, the CT forward model-based Weighted Stein’s Unbiased Risk Estimator (WSURE) is proposed to train a DNN for denoising CT sinograms and to subsequently reconstruct the CT image using FBP. Our proposed methods achieve excellent performance in both fast computation and reconstructed image quality, which is more comparable to the results of the DNNs trained with full-dose ground truth data than other state-of-the-art denoising methods such as the BM3D, Deep Image Prior, and Deep Decoder.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar