View-Wise Versus Cluster-Wise Weight: Which Is Better for Multi-View Clustering?

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

View-Wise Versus Cluster-Wise Weight: Which Is Better for Multi-View Clustering?

Shizhe Hu; Zhengzheng Lou; Yangdong Ye

Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting…
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in…
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat…
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special…
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:…

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel