Skip to main content

Deep Learning for Camera Autofocus

Most digital cameras use specialized autofocus sensors, such as phase detection, lidar or ultrasound, to directly measure focus state. However, such sensors increase cost and complexity without directly optimizing final image quality. This paper proposes a new pipeline for image-based autofocus and shows that neural image analysis finds focus 5-10x faster than traditional contrast enhancement. 

10 Nov.

Hybrid Beamforming for 5G Millimeter-Wave Systems

The upcoming 5G network needs to achieve substantially larger link capacity and ultra-low latency to support emerging mobile applications. While conventional techniques have reached their limits, uplifting the carrier frequency to the millimeter-wave (mm-wave) band stands out as an effective approach to further boost the network capacity, as it provides orders of magnitude greater spectrum than current cellular bands.

Full Story

Modified Magnitude-Phase Spectrum Information for Spoofing Detection

Most of the existing feature representations for spoofing countermeasures consider information either from the magnitude or phase spectrum. We hypothesize that both magnitude and phase spectra can be beneficial for spoofing detection (SD) when collectively used to capture the signal artifacts. In this work, we propose a novel feature referred to as modified magnitude-phase spectrum (MMPS) to capture both magnitude and phase information from the speech signal. 

Linguistic Steganography: From Symbolic Space to Semantic Space

Previous works about linguistic steganography such as synonym substitution and sampling-based methods usually manipulate observed symbols explicitly to conceal secret information, which may give rise to security risks. In this letter, in order to preclude straightforward operation on observed symbols, we explored generation-based linguistic steganography in latent space by means of encoding secret messages in the selection of implicit attributes (semanteme) of natural language.

Meta-MSNet: Meta-Learning Based Multi-Source Data Fusion for Traffic Flow Prediction

Traffic flow prediction is a challenging task while most existing works are faced with two main problems in extracting complicated intrinsic and extrinsic features. In terms of intrinsic features, current methods don't fully exploit different functions of short-term neighboring and long-term periodic temporal patterns.

Robust Downlink Transmit Optimization Under Quantized Channel Feedback via the Strong Duality for QCQP

Consider a robust multiple-input single-output downlink beamforming optimization problem in a frequency division duplexing system. The base station (BS) sends training signals to the users, and every user estimates the channel coefficients, quantizes the gain and the direction of the estimated channel and sends them back to the BS. 

Fast Sequential Clustering in Riemannian Manifolds for Dynamic and Time-Series-Annotated Multilayer Networks

This work exploits Riemannian manifolds to build a sequential-clustering framework able to address a wide variety of clustering tasks in dynamic multilayer (brain) networks via the information extracted from their nodal time-series. The discussion follows a bottom-up path, starting from feature extraction from time-series and reaching up to Riemannian manifolds (feature spaces) to address clustering tasks such as state clustering, community detection (a.k.a. network-topology identification), and subnetwork-sequence tracking.