IEEE TASLP Article

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

IEEE TASLP Article

This study proposes a cross-domain multi-objective speech assessment model, called MOSA-Net, which can simultaneously estimate the speech quality, intelligibility, and distortion assessment scores of an input speech signal. MOSA-Net comprises a convolutional neural network and bidirectional long short-term memory architecture for representation extraction, and a multiplicative attention layer and a fully connected layer for each assessment metric prediction. Additionally, cross-domain features (spectral and time-domain features) and latent representations from self-supervised learned (SSL) models are used as inputs to combine rich acoustic information to obtain more accurate assessments.

This paper introduces a new framework for non-parallel emotion conversion in speech. Our framework is based on two key contributions. First, we propose a stochastic version of the popular Cycle-GAN model. Our modified loss function introduces a Kullback–Leibler (KL) divergence term that aligns the source and target data distributions learned by the generators, thus overcoming the limitations of sample-wise generation. By using a variational approximation to this stochastic loss function, we show that our KL divergence term can be implemented via a paired density discriminator.

In automatic speech recognition (ASR) research, discriminative criteria have achieved superior performance in DNN-HMM systems. Given this success, the adoption of discriminative criteria is promising to boost the performance of end-to-end (E2E) ASR systems. With this motivation, previous works have introduced the minimum Bayesian risk (MBR, one of the discriminative criteria) into E2E ASR systems. However, the effectiveness and efficiency of the MBR-based methods are compromised: the MBR criterion is only used in system training, which creates a mismatch between training and decoding;

Emotional voice conversion (VC) aims to convert a neutral voice to an emotional one while retaining the linguistic information and speaker identity. We note that the decoupling of emotional features from other speech information (such as content, speaker identity, etc.) is the key to achieving promising performance. Some recent attempts of speech representation decoupling on the neutral speech cannot work well on the emotional speech, due to the more complex entanglement of acoustic properties in the latter. 

Detection of speech and music signals in isolated and overlapped conditions is an essential preprocessing step for many audio applications. Speech signals have wavy and continuous harmonics, while music signals exhibit horizontally linear and discontinuous harmonic patterns. Music signals also contain more percussive components than speech signals, manifested as vertical striations in the spectrograms.

Deep neural networks (DNNs) represent the mainstream methodology for supervised speech enhancement, primarily due to their capability to model complex functions using hierarchical representations. However, a recent study revealed that DNNs trained on a single corpus fail to generalize to untrained corpora, especially in low signal-to-noise ratio (SNR) conditions.

In many real-world settings, machine learning models need to identify user inputs that are out-of-domain (OOD) so as to avoid performing wrong actions. This work focuses on a challenging case of OOD detection, where no labels for in-domain data are accessible (e.g., no intent labels for the intent classification task).

The perception of one’s own voice influences the acceptance of hearing devices, such as headphones, headsets or hearing aids. When these devices fully or partially occlude the ear canal, the wearer’s own voice sounds boomy or like talking in a barrel. This is called occlusion effect . Occluding the ear canal results in an amplification of body-conducted sounds, mainly at low frequencies, and an attenuation of air-conducted sounds, predominantly at high frequencies, compared to the open ear. 

Transcribing structural data into readable text (data-to-text) is a fundamental language generation task. One of its challenges is to plan the input records for text realization. Recent works tackle this problem with a static planner, which performs record planning in advance for text realization. However, they cannot revise plans to cope with unexpected realized text and require golden plans for supervised training. To address these issues, we first propose a model that contains a dynamic planner.

We present a scalable and efficient neural waveform coding system for speech compression. We formulate the speech coding problem as an autoencoding task, where a convolutional neural network (CNN) performs encoding and decoding as a neural waveform codec (NWC) during its feedforward routine. The proposed NWC also defines quantization and entropy coding as a trainable module, so the coding artifacts and bitrate control are handled during the optimization process.

Pages

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar