TASLP Volume 32 | 2024

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.


TASLP Volume 32 | 2024

Human speech can be characterized by different components, including semantic content, speaker identity and prosodic information. Significant progress has been made in disentangling representations for semantic content and speaker identity in speech recognition and speaker verification tasks respectively. However, it is still an open challenging question to extract prosodic information because of the intrinsic association of different attributes, such as timbre and rhythm, and because of the need for supervised training schemes to achieve robust speech recognition.

Speech applications in far-field real world settings often deal with signals that are corrupted by reverberation. The task of dereverberation constitutes an important step to improve the audible quality and to reduce the error rates in applications like automatic speech recognition (ASR). We propose a unified framework of speech dereverberation for improving the speech quality and the ASR performance using the approach of envelope-carrier decomposition provided by an autoregressive (AR) model.

Question answering requiring numerical reasoning, which generally involves symbolic operations such as sorting, counting, and addition, is a challenging task. To address such a problem, existing mixture-of-experts (MoE)-based methods design several specific answer predictors to handle different types of questions and achieve promising performance. However, they ignore the modeling and exploitation of fine-grained reasoning-related operations to support numerical reasoning, encountering the inadequacy in reasoning capability and interpretability.

The speaker recognition evaluation is conducted in a framework in which three score distributions and two decision thresholds are employed, and the statistic of interest is an average of the two weighted sums of the probabilities of type I and type II errors at the two thresholds correspondingly. And data dependence caused by multiple use of the same subjects exists ubiquitously in order to generate more samples because of limited resources.


IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel