Skip to main content

Leonardo Tomazeli Duarte

University of Campinas Limeira-SP, Brazil

Iole Moccagatta

Intel San Jose, CA, USA

Learning Deep Analysis Dictionaries for Image Super-Resolution

Inspired by the recent success of deep neural networks and the recent efforts to develop multi-layer dictionary models, we propose a Deep Analysis dictionary Model (DeepAM) which is optimized to address a specific regression task known as single image super-resolution. Contrary to other multi-layer dictionary models, our architecture contains L layers of analysis dictionary and soft-thresholding operators to gradually extract high-level features and a layer of synthesis dictionary which is designed to optimize the regression task at hand.

Single-Pulse Simultaneous Target Detection and Angle Estimation in a Multichannel Phased Array Radar

This paper is focused on simultaneous target detection and angle estimation with a multichannel phased array radar. Resorting to a linearized expression for the array steering vector around the beam pointing direction, the problem is formulated as a composite binary hypothesis test where the unknowns, under the alternative hypothesis, include the target directional cosines displacements with respect to the array nominal coarse pointing direction. 

Bandwidth-Constrained Decentralized Detection of an Unknown Vector Signal via Multisensor Fusion

Decentralized detection is one of the key tasks that a wireless sensor network (WSN) is faced to accomplish. Among several decision criteria, the Rao test is able to cope with an unknown (but parametrically-specified) sensing model, while keeping computational simplicity. To this end, the Rao test is employed in this paper to fuse multivariate data measured by a set of sensor nodes, each observing the target (or the desired) event via a nonlinear mapping function. 

Convex Combination of Diffusion Strategies Over Networks

Combining diffusion strategies with complementary properties enables enhanced performance when they can be run simultaneously. In this article, we first propose two schemes for the convex combination of two diffusion strategies, namely, the power-normalized scheme and the sign-regressor scheme. Then, we conduct theoretical analysis for one of the schemes, i.e., the power-normalized one.

A New Method and Benchmark for Detecting Co-Saliency Within a Single Image

Recently, saliency detection in a single image and co-saliency detection in multiple images have drawn extensive research interest in the vision and multimedia communities. In this paper, we investigate a new problem of co-saliency detection within a single image, i.e., detecting within-image co-saliency . By identifying common saliency within an image, e.g., highlighting multiple occurrences of an object class with similar appearance, this work can benefit many important applications, such as the detection of objects of interest, more robust object recognition, reduction of information redundancy, and animation synthesis. We propose a new bottom-up method to address this problem.

Low-Light Image Enhancement With Semi-Decoupled Decomposition

Low-light image enhancement is important for high-quality image display and other visual applications. However, it is a challenging task as the enhancement is expected to improve the visibility of an image while keeping its visual naturalness. Retinex-based methods have well been recognized as a representative technique for this task, but they still have the following limitations. First, due to less-effective image decomposition or strong imaging noise, various artifacts can still be brought into enhanced results.face of an object. These patches can be applied to multiple regions of the object, thereby making it resistant to various attacks such as cropping, local deformation, local surface degradation, or printing errors. 

Blind Watermarking for 3-D Printed Objects by Locally Modifying Layer Thickness

We propose a new blind watermarking algorithm for 3D printed objects that has applications in metadata embedding, robotic grasping, counterfeit prevention, and crime investigation. Our method can be used on fused deposition modeling (FDM) 3D printers and works by modifying the printed layer thickness on small patches of the surface of an object. These patches can be applied to multiple regions of the object, thereby making it resistant to various attacks such as cropping, local deformation, local surface degradation, or printing errors.