Skip to main content

Precoder Feedback Schemes for Robust Interference Alignment With Bounded CSI Uncertainty

This article presents limited feedback-based precoder quantization schemes for Interference Alignment (IA) with bounded channel state information (CSI) uncertainty. Initially, this work generalizes the min-max mean squared error (MSE) framework, followed by the development of robust precoder and decoder designs based on worst case MSE minimization.

A Single-Image Super-Resolution Method Based on Progressive-Iterative Approximation

In this paper, a novel single image super-resolution (SR) method based on progressive-iterative approximation is proposed. To preserve textures and clear edges, the image SR reconstruction is treated as an image progressive-iterative fitting procedure and achieved by iterative interpolation. 

Acoustic Scene Clustering Using Joint Optimization of Deep Embedding Learning and Clustering Iteration

Recent efforts have been made on acoustic scene classification in the audio signal processing community. In contrast, few studies have been conducted on acoustic scene clustering, which is a newly emerging problem. Acoustic scene clustering aims at merging the audio recordings of the same class of acoustic scene into a single cluster without using prior information and training classifiers. In this study, we propose a method for acoustic scene clustering that jointly optimizes the procedures of feature learning and clustering iteration.

Accurate and Robust Video Saliency Detection via Self-Paced Diffusion

Conventional video saliency detection methods frequently follow the common bottom-up thread to estimate video saliency within the short-term fashion. As a result, such methods can not avoid the obstinate accumulation of errors when the collected low-level clues are constantly ill-detected. Also, being noticed that a portion of video frames, which are not nearby the current video frame over the time axis, may potentially benefit the saliency detection in the current video frame.

Distinct Feature Extraction for Video-Based Gait Phase Classification

Recent advances in image acquisition and analysis have resulted in disruptive innovation in physical rehabilitation systems facilitating cost-effective, portable, video-based gait assessment. While these inexpensive motion capture systems, suitable for home rehabilitation, do not generally provide accurate kinematics measurements on their own, image processing algorithms ensure gait analysis that is accurate enough for rehabilitation programs. 

Deblurring Face Images Using Uncertainty Guided Multi-Stream Semantic Networks

We propose a novel multi-stream architecture and training methodology that exploits semantic labels for facial image deblurring. The proposed Uncertainty Guided Multi-Stream Semantic Network (UMSN) processes regions belonging to each semantic class independently and learns to combine their outputs into the final deblurred result. Pixel-wise semantic labels are obtained using a segmentation network.