With the increasing scale of antenna arrays in wideband millimeter-wave (mmWave) communications, the physical propagation delays of electromagnetic waves traveling across the whole array will become large and comparable to the time-domain sample period, which is known as the spatial-wideband effect. In this case, different subcarriers in an orthogonal frequency division multiplexing (OFDM) system will “see” distinct angles of arrival (AoAs) for the same path.
In this paper, we develop a kernel adaptive filter for quaternion data, using stochastic information gradient (SIG) cost function based on the information theoretic learning (ITL) approach. The new algorithm (QKSIG) is useful for quaternion-based kernel applications of nonlinear filtering. Adaptive filtering in quaterion domain intrinsically incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input.
Graph signal processing (GSP) has become an important tool in many areas such as image processing, networking learning and analysis of social network data. In this paper, we propose a broader framework that not only encompasses traditional GSP as a special case, but also includes a hybrid framework of graph and classical signal processing over a continuous domain.
We consider the problem of detecting abrupt changes in the underlying stochastic structure of multivariate signals. A novel non-parametric and model-free off-line change-point detection method based on a kernel mapping is presented. This approach is sequential and alternates between two steps: a greedy detection to estimate a new breakpoint and a projection to remove its contribution to the signal.
The paper considers sparse array design for receive beamforming achieving maximum signal-to-interference plus noise ratio (MaxSINR) for both single point source and multiple point sources, operating in an interference active environment. Unlike existing sparse design methods which either deal with structured environment-independent or non-structured environment-dependent arrays, our method is a hybrid approach and seeks a full augumentable array that optimizes beamformer performance.
Signal sampling and reconstruction is a fundamental engineering task at the heart of signal processing. The celebrated Shannon-Nyquist theorem guarantees perfect signal reconstruction from uniform samples, obtained at a rate twice the maximum frequency present in the signal. Unfortunately a large number of signals of interest are far from being band-limited.
We study conditions that allow accurate graphical model selection from non-stationary data. The observed data is modelled as a vector-valued zero-mean Gaussian random process whose samples are uncorrelated but have different covariance matrices. This model contains as special cases the standard setting of i.i.d. samples as well as the case of samples forming a stationary time series.
This work addresses the problem of learning sparse representations of tensor data using structured dictionary learning. It proposes learning a mixture of separable dictionaries to better capture the structure of tensor data by generalizing the separable dictionary learning model. Two different approaches for learning mixture of separable dictionaries are explored and sufficient conditions for local identifiability of the underlying dictionary are derived in each case.
Use the SPS Brand materials below that contains the IEEE Signal Processing Society logos for download. It may be used for print, brochures, digital and promotional items. Refer to the Branding and Visual Identity Guidelines.
Lecture Date: March 2, 2020
Chapter: Columbus
Chapter Chair: Kiryung Lee
Topic: Opinion Dynamics Models in Social Networks:
polarization and the influence of zealots