Skip to main content

Bipartite Consensus for Takagi-Sugeno Fuzzy Uncertain Multi-Agent Systems With Gain Fluctuations

This paper examines the problem of bipartite consensus for Takagi-Sugeno fuzzy multi-agent systems subject to uncertainties. The principal intention of this work is to develop a non-fragile controller through which the considered multi-agent system can achieve bipartite consensus. An undirected signed graph is considered to describe the cooperative and competitive interaction among neighboring agents.

A Distributed Nesterov-Like Gradient Tracking Algorithm for Composite Constrained Optimization

This paper focuses on the constrained optimization problem where the objective function is composed of smooth (possibly nonconvex) and nonsmooth parts. The proposed algorithm integrates the successive convex approximation (SCA) technique with the gradient tracking mechanism that aims at achieving a linear convergence rate and employing the momentum term to regulate update directions in each time instant. 

Performance Analysis of Smart Grid Wide Area Network With RIS Assisted Three Hop System

In this paper, we investigate the performance of a wide area network (WAN) with three hops over a mixed radio frequency (RF), reconfigurable intelligent surface (RIS) assisted RF and Free space optics (FSO) channel. Here RIS and decode-and-forward (DF) relays are used to improve the coverage and system performance. For general applicability, the RF and FSO links are modelled with Saleh-Valenzuela (S-V) and Gamma-Gamma distribution, respectively.

Joint Graph Learning and Blind Separation of Smooth Graph Signals Using Minimization of Mutual Information and Laplacian Quadratic Forms

The smoothness of graph signals has found desirable real applications for processing irregular (graph-based) signals. When the latent sources of the mixtures provided to us as observations are smooth graph signals, it is more efficient to use graph signal smoothness terms along with the classic independence criteria in Blind Source Separation (BSS) approaches. In the case of underlying graphs being known, Graph Signal Processing (GSP) provides valuable tools; however, in many real applications, these graphs can not be well-defined a priori and need to be learned from data. 

Graph Wedgelets: Adaptive Data Compression on Graphs Based on Binary Wedge Partitioning Trees and Geometric Wavelets

We introduce graph wedgelets - a tool for data compression on graphs based on the representation of signals by piecewise constant functions on adaptively generated binary graph partitionings. The adaptivity of the partitionings, a key ingredient to obtain sparse representations of a graph signal, is realized in terms of recursive wedge splits adapted to the signal. For this, we transfer adaptive partitioning and compression techniques known for 2D images to general graph structures and develop discrete variants of continuous wedgelets and binary space partitionings.

Cooperative Learning of Multi-Agent Systems Via Reinforcement Learning

In many specific scenarios, accurateand practical cooperative learning is a commonly encountered challenge in multi-agent systems. Thus, the current investigation focuses on cooperative learning algorithms for multi-agent systems and underpins an alternate data-based neural network reinforcement learning framework. To achieve the data-based learning optimization, the proposed cooperative learning framework, which comprises two layers, introduces a virtual learning objective.

Multi-Stream Progressive Restoration for Low-Light Light Field Enhancement and Denoising

Light Fields (LFs) are easily degraded by noise and low light. Low light LF enhancement and denoising are more challenging than single image tasks because the epipolar information among views should be taken into consideration. In this work, we propose a multiple stream progressive restoration network to restore the whole LF in just one forward pass. To make full use of the multiple views supplementary information and preserve the epipolar information, we design three types of input composed of view stacking.

Provable General Bounded Denoisers for Snapshot Compressive Imaging With Convergence Guarantee

In the snapshot compressive imaging (SCI) field, how to explore priors for recovering the original high-dimensional data from its lower-dimensional measurements is a challenge. Recent plug-and-play efforts plugged by deep denoisers have achieved superior performance, and their convergences have been guaranteed under the assumption of bounded denoisers and the condition of diminishing noise levels. However, it is difficult to explicitly prove the bounded properties of existing deep denoisers due to complex network architectures.

LightingNet: An Integrated Learning Method for Low-Light Image Enhancement

Images captured in low-light environments suffer from serious degradation due to insufficient light, leading to the performance decline of industrial and civilian devices. To address the problems of noise, chromatic aberration, and detail distortion for enhancing low-light images using existing enhancement methods, this paper proposes an integrated learning approach (LightingNet) for low-light image enhancement. 

Sparse-View Cone Beam CT Reconstruction Using Data-Consistent Supervised and Adversarial Learning From Scarce Training Data

Reconstruction of CT images from a limited set of projections through an object is important in several applications ranging from medical imaging to industrial settings. As the number of available projections decreases, traditional reconstruction techniques such as the FDK algorithm and model-based iterative reconstruction methods perform poorly.