Skip to main content

Gaussian Process Upper Confidence Bounds in Distributed Point Target Tracking Over Wireless Sensor Networks

Uncertainty quantification plays a key role in the development of autonomous systems, decision-making, and tracking over wireless sensor networks (WSNs). However, there is a need of providing uncertainty confidence bounds, especially for distributed machine learning-based tracking, dealing with different volumes of data collected by sensors.

Canny Enhanced High-Resolution Neural Network for Satellite Image Based Land Cover Classification and Its Application in Wireless Channel Simulations

Satellite image based land cover classification, which falls under the category of semantic segmentation, is critical for many global and environmental applications. Deep learning has been proven to be excellent in semantic segmentation. However, mainstream neural networks formed by connecting high-to-low convolutions in series are prone to losing image information, which affects the accuracy of semantic segmentation.