Skip to main content

Stability of Image-Reconstruction Algorithms

Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ( 2 and 1 regularization) and present novel stability results for p -regularized linear inverse problems for p(1,) . Our results guarantee Lipschitz continuity for small p and Hölder continuity for larger p . They generalize well to the Lp (Ω)  function spaces.

A Generalized Extended Nested Array Design via Maximum Inter-Element Spacing Criterion

This letter proposes a generalised extended nested array with multiple subarrays (GENAMS) array via the maximum inter-element spacing (IES) constraint principle. Based on the IES set patterns of the two-sides extended nested array and the flexible extended nested array with multiple subarrays type-2, a generalised IES set pattern is derived.

Fine-Scale Face Fitting and Texture Fusion With Inverse Renderer

3D face reconstruction from a single image still suffers from low accuracy and inability to recover textures in invisible regions. In this paper, we propose a method for generating a 3D portrait with complete texture. The coarse face-and-head model and texture parameters are obtained using 3D Morphable Model fitting. We design an image-geometric inverse renderer that acquires normal, albedo, and light to jointly reconstruct the facial details.

Improved RIC Bounds in Terms of δ2s for Hard Thresholding-Based Algorithms

Iterative hard thresholding (IHT) and hard thresholding pursuit (HTP) are two kinds of classical hard thresholding-based algorithms widely used in compressed sensing. Restricted isometry constant (RIC) of sensing matrix which ensures the convergence of iterative algorithms plays a key role in guaranteeing successful recovery. In the analysis of sufficient condition to ensure recovery performance, the RIC δ3s is generally used in previous literature, while δ2s is rarely addressed. In this letter, we first show that the theoretical optimal step-length is 1 while using sufficient condition in terms of δ2s .

Learning Adaptive Sparse Spatially-Regularized Correlation Filters for Visual Tracking

The correlation filter(CF)-based tracker is a classic and effective model in the field of visual tracking. For a long time, most CF-based trackers solved filters using only ridge regression equations with l2 -norm, which can make the trained model noisy and not sparse. As a result, we propose a model of adaptive sparse spatially-regularized correlation filters (AS2RCF). Aiming to suppress the noise mixed in the model, we improve it by introducing an l1 -norm spatial regularization term. 

Deep Image Registration With Depth-Aware Homography Estimation

Image registration is a basic task in computer vision, for its wide potential applications in image stitching, stereo vision, motion estimation, and etc. Most current methods achieve image registration by estimating a global homography matrix between candidate images with point-feature-based matching or direct prediction. However, as real-world 3D scenes have point-variant photograph distances (depth), a unified homography matrix is not sufficient to depict the specific pixel-wise relations between two images.

Symmetric Saliency-Based Adversarial Attack to Speaker Identification

Adversarial attack approaches to speaker identification either need high computational cost or are not very effective, to our knowledge. To address this issue, in this letter, we propose a novel generation-network-based approach, called symmetric saliency-based encoder-decoder (SSED), to generate adversarial voice examples to speaker identification.

On the Relationship Between Universal Adversarial Attacks and Sparse Representations

The prominent success of neural networks, mainly in computer vision tasks, is increasingly shadowed by their sensitivity to small, barely perceivable adversarial perturbations in image input. In this article, we aim at explaining this vulnerability through the framework of sparsity. We show the connection between adversarial attacks and sparse representations, with a focus on explaining the universality and transferability of adversarial examples in neural networks.

Scalable and Privacy-Aware Online Learning of Nonlinear Structural Equation Models

An online topology estimation algorithm for nonlinear structural equation models (SEM) is proposed in this paper, addressing the nonlinearity and the non-stationarity of real-world systems. The nonlinearity is modeled using kernel formulations, and the curse of dimensionality associated with the kernels is mitigated using random feature approximation.

Per-Wavelet Equalization for Discrete Wavelet Transform Based Multi-Carrier Modulation Systems

The Discrete Wavelet Transform (DWT) has gained attention in the area of Multi-Carrier Modulation (MCM) because it can overcome some well known limitations of Discrete Fourier Transform (DFT) based MCM systems. Its improved spectral containment removes the need for a cyclic prefix, be it that appropriate equalization then has to be added as the cyclic convolution property no longer holds. Most DWT based MCM systems in the literature use Time-domain EQualizers (TEQs) to mitigate the channel distortion.