Skip to main content

Data Challenges

(with available data challenges)
Past Challenges
Speech and Language Processing

closed
Audio and Acoustic Signal Processing

Listener Acoustic Personalisation (LAP) Challenge 2024

Supported by the SPS Challenge Program.

Personalised Head-Related Transfer Functions (HRTFs) have been shown to enhance auditory localization and immersion in mixed realities. However, relevant issues, such as the accurate acquisition of user-specific anatomical data, efficient simulation algorithms, and effective user validation, do not converge into a common and internationally recognized benchmark for evaluating HRTFs.

ICASSP 2023 Acoustic Echo Cancellation Challenge: ICASSP 2023

The ICASSP 2023 Acoustic Echo Cancellation Challenge is intended to stimulate research in acoustic echo cancellation (AEC), which is an important area of speech enhancement and is still a top issue in audio communication. This is the fourth AEC challenge and it is enhanced by adding a second track for personalized acoustic echo cancellation, reducing the algorithmic latency to 20ms, and including a full-band version of AECMOS.

SPeech Enhancement for Augmented Reality (SPEAR) challenge 2022

Listening in noisy reverberant environments can be challenging. The recent emergence of hearable devices, such as smart headphones, smart glasses and virtual/augmented reality headsets, presents an opportunity for a new class of speech and acoustic signal processing algorithms which use multimodal sensor data to compensate for, or even exploit, changes in head orientation. 

L3DAS22 Machine Learning for 3D Audio Signal Processing: ICASSP 2022

Associated SPS Event: IEEE ICASSP 2022 Grand Challenge

The L3DAS22 Challenge aims at encouraging and fostering research on machine learning for 3D audio signal processing. 3D audio is gaining increasing interest in the machine learning community in recent years. The range of applications is incredibly wide, extending from virtual and real conferencing to autonomous driving, surveillance and many more.

Deep Noise Suppression Challenge: ICASSP 2022

Associated SPS Event: IEEE ICASSP 2022 Grand Challenge

Noise suppression has become more important than ever before due to the increasing use of voice interfaces for various applications. Given the millions of internet-connected devices being employed for audio/video calls, noise suppression is expected to be effective for all noise types chosen from daily-life scenarios.

Audio Deepfake Detection: ICASSP 2022

Associated SPS Event: IEEE ICASSP 2022 Grand Challenge

Over the last few years, the technology of speech synthesis and voice conversion has made significant improvement with the development of deep learning. The models can generate realistic and human-like speech. It is difficult for most people to distinguish the generated audio from the real. However, this technology also poses a great threat to the global political economy and social stability if some attackers and criminals misuse it with the intent to cause harm. 

Multi-Speaker Multi-Style Voice Cloning Challenge (M2VoC) (ICASSP 2021)

Associated SPS Event: IEEE ICASSP 2021 Grand Challenge

Text-to-speech (TTS) or speech synthesis has witnessed significant performance improvement with the help of deep learning. The latest advances in end-to-end text-to-speech paradigm and neural vocoder have enabled us to produce very realistic and natural-sounding synthetic speech reaching almost human-parity performance. But this amazing ability is still limited to the ideal scenarios with a large single-speaker less-expressive training set.

Deep Noise Suppression Challenge (ICASSP 2021)

Associated SPS Event: IEEE ICASSP 2021 Grand Challenge

The ICASSP 2021 Deep Noise Suppression (DNS) challenge is designed to foster innovation in the field of noise suppression to achieve superior perceptual speech quality. We recently organized a DNS challenge special session at INTERSPEECH 2020. We open sourced training and test datasets for researchers to train their noise suppression models. We also open sourced a subjective evaluation framework and used the tool to evaluate and pick the final winners. Many researchers from academia and industry made significant contributions to push the field forward.

Acoustic Echo Cancellation Challenge: Datasets and Testing Framework - ICASSP 2021

Associated SPS Event: IEEE ICASSP 2021 Grand Challenge

The ICASSP 2021 Acoustic Echo Cancellation Challenge is intended to stimulate research in the area of acoustic echo cancellation (AEC), which is an important part of speech enhancement and still a top issue in audio communication and conferencing systems. Many recent AEC studies report good performance on synthetic datasets where the train and test samples come from the same underlying distribution.

(SPCup 2017) The Signal Processing Cup Challenge

The IEEE Signal Processing Society announced the fourth edition of the Signal Processing Cup: a real-time beat tracking challenge. The beat is a salient periodicity in a music signal. It provides a fundamental unit of time and foundation for the temporal structure of the music. As Meinard Müller says (Fundamentals of Music Processing, Springer, 2015), “It is the beat that drives music forward and provides the temporal framework of a piece of music. Intuitively, the beat corresponds to the pulse a human taps along when listening to music.”

(DCASE 2016) Detection and Classification of Acoustic Scenes and Events Challenge

The workshop aims to provide a venue for researchers working on computational analysis of sound events and scene analysis to present and discuss their results. We aim to bring together researchers from many different universities and companies with interest in the topic, and provide the opportunity for scientific exchange of ideas and opinions. The workshop is organized as a satellite event to the 2016 European Signal Processing Conference (EUSIPCO).

(REVERB 2014) Reverberant Voice Enhancement and Recognition Benchmark Challenge

Recently, substantial progress has been made in the field of reverberant speech signal processing, including both single- and multi-channel de-reverberation techniques, and automatic speech recognition (ASR) techniques robust to reverberation. REVERB (REverberant Voice Enhancement and Recognition Benchmark) challenge that provides an opportunity to the researchers in the field to carry out a comprehensive evaluation of their methods based on a common database and on common evaluation metrics.

(ACE 2014) The Acoustic Characterisation of Environments (ACE) Challenge

The ACE Challenge was part of the programme of Challenges organised by the IEEE Audio and Acoustic Signal Processing Technical Committee. The aim of this challenge was to evaluate state-of-the-art algorithms for blind acoustic parameter estimation from speech and to promote the emerging area of research in this field. Participants will evaluate their algorithms for T60 and DRR estimation against the ‘ground truth’ values provided with the data-sets. Furthermore, they are expected to present the results in a paper describing the method used.

Bio Imaging and Signal Processing

Digitization and Classification of ECG Images: The George B. Moody PhysioNet Challenge 2024

Supported by the SPS Challenge Program

The George B. Moody PhysioNet Challenges are annual competitions that invite participants to develop automated approaches for addressing important physiological and clinical problems. The 2024 Challenge invites teams to develop algorithms for digitizing and classifying electrocardiograms (ECGs) captured from images or paper printouts. 

Seizure Detection Challenge: ICASSP 2023

Epilepsy is one of the most common neurological disorders, affecting almost 1% of the population worldwide. The categorization of seizures is usually made based on the seizure onset zone (area of the brain where the seizure initiates) the progression of the seizure and the awareness status of the patient that experience the seizure. Focal onset seizures are the most common type of seizures in adults with epilepsy.

Auditory EEG Decoding Challenge: ICASSP 2023

Various neuroimaging techniques can be used to investigate how the brain processes sound. Electroencephalography (EEG) is popular because it is relatively easy to conduct and has a high temporal resolution. An increasingly popular method in these fields is to relate a person’s electroencephalogram (EEG) to a feature of the natural speech signal they were listening to. This is typically done using linear regression or relatively simple neural networks to predict the EEG signal from the stimulus or to decode the stimulus from the EEG.

e-Prevention: Person Identification and Relapse Detection from Continuous Recordings of Biosignals: IEEE ICASSP 2023

The challenge will concern the analysis and processing of long-term continuous recordings of biosignals recorded from wearable sensors embedded in smartwatches, in order to extract high-level representations of the wearer’s activity and behavior for two downstream tasks: 1) Identification of the wearer of the smartwatch, and 2) Detection of relapses in patients in the psychotic spectrum. 

Parasitic Egg Detection and Classification in Microscopic Images (ICIP 2022)

Associated SPS Event: IEEE ICIP 2022 Grand Challenge

Intestinal parasitic infections remain among the leading causes of morbidity worldwide, especially in tropical and sub-tropical areas with more temperate climates. According to WHO, approximately 1.5 billion people, or 24% of the world’s population, are infected with soil-transmitted helminth infections (STH), and 836 million children worldwide required preventive chemotherapy for STH in 2020.

COVID-19 Diagnosis (ICASSP 2021)

Associated SPS Event: IEEE ICASSP 2021 Grand Challenge

Novel Coronavirus (COVID-19) has drastically overwhelmed more than 200 countries around the world affecting millions and claiming more than 1.5 million human lives, since its first emergence in late 2019. This highly contagious disease can easily spread, and if not controlled in a timely fashion, can rapidly incapacitate healthcare systems.

The First TReNDS Neuroimaging Competition: Multiscanner normative age and assessments prediction with brain function, structure, and connectivity

Translational utility is the ability of certain biomedical imaging features to capture useful subject-level characteristics in clinical settings, yielding sensible descriptions and/or predictions for individualized treatment trajectory. An important step in achieving translational utility is to demonstrate the association between imaging features and individual characteristics, such as sex, age, and other relevant assessments, on a large out-of-sample unaffected population (no diagnosed illnesses). This initial step then provides a strong normative basis for comparison with patient populations in clinical settings. Detailed information. Website.

 

 

Automatic Cancer Detection and Classification in Whole-slide Lung Histopathology (ACDC@LungHP)

Digital pathology has been gradually introduced in clinical practice. Although the digital pathology scanner could give very high resolution whole-slide images (WSI) (up to 160nm per pixel), the manual analysis of WSI is still a time-consuming task for the pathologists. Automatic analysis algorithms offer a way to reduce the burden for pathologists. Our proposed challenge will focus on automatic detection and classification of lung cancer using Whole-slide Histopathology. This subject is highly clinical relevant because lung cancer is the top cause of cancer-related death in the world.

MRI White Matter Reconstruction Challenge (MEMENTO)

Diffusion MRI has emerged as a key modality for imaging brain tissue microstructural features, yet, validation is necessary for accurate and useful biomarkers. Towards this end, we present the two-year ISBI 2019/2020 diffusion Mri whitE Matter rEcoNstrucTiOn (MEMENTO) challenge. The first year is dedicated to designing the challenge, building the appropriate dataset(s), and making it available to the community. The challenge and participant submissions will take place in the second year, with the aim to evaluate and advance the state of the microstructural modeling field.

Time-Lapse Cell Segmentation Benchmark

In 2012, Cell Tracking Challenge (CTC) was launched to objectively compare and evaluate state-of-the-art whole-cell and nucleus segmentation and tracking methods using both real (2D and 3D) time-lapse microscopy videos of cells and nuclei, along with computer generated (2D and 3D) video sequences simulating nuclei moving in realistic environments. To address numerous requests for benchmarking only cell segmentation methods (without tracking), we are launching now a new time-lapse cell segmentation benchmark on the same datasets (plus one new dataset).

CHAOS : Combined (CT-MR) Healthy Abdominal Organ Segmentation

CHAOS has two separate but related aims:

  1. Segmentation of liver from computed tomography (CT) data sets, which are acquired at portal phase after contrast agent injection for pre-evaluation of living donated liver transplantation donors (15 training + 15 test sets).
  2. Segmentation of four abdominal organs (i.e. liver, spleen, right and left kidneys) from magnetic resonance imaging (MRI) data sets acquired with two different sequences (T1-DUAL and T2-SPIR) (15 training + 15 test sets).

PALM: PathologicAL Myopia detection from retinal images

The PALM challenge focuses on investigation and development of algorithms associated with diagnosis of Pathologic Myopia (PM) and segmentation of lesions in fundus photos from PM patients. Myopia is currently the ocular disease with the highest morbidity. About 2 billion people have myopia in the world, 35% of which are high myopia. High myopia leads to elongation of axial length and thinning of retinal structures. With progression of the disease into PM, macular retinoschisis, retinal atrophy and even retinal detachment may occur, causing irreversible impairment to visual acuity.

Automatic Non-rigid Histological Image Registration (ANHIR)

In digital pathology, it is often useful to align spatially close but differently stained tissue sections in order to obtain the combined information. The images are large, in general, their appearance and their local structure are different, and they are related through a nonlinear transformation. The proposed challenge focuses on comparing the accuracy and approximative speed of automatic non-linear registration methods for this task. Registration accuracy will be evaluated using manually annotated landmarks.

Liver Cell Segmentation (PAIP 2019)

The goal of the challenge is to evaluate new and existing algorithms for automated detection of liver cancer in whole-slide images (WSIs). There are two tasks and therefore two leaderboards for evaluating the performance of the algorithms. Participants can choose to join both or either tasks according to their interests.

Classification of Normal versus Malignant Cells in B-ALL White Blood Cancer Microscopic Images

Computer assisted tools can provide cost effective and easily deployable solutions for cancer diagnostics. The aim of this challenge is to build a classifier for the identification of leukemic versus normal immature cells for while blood cancer, namely, B-ALL diagnostics. A dataset of cells with class labels, marked by the expert based on the domain knowledge, will be provided at the subject-level to train the classifier. This problem is interesting because the two cell types appear similar under the microscope and subject-level variability plays a key role.