Skip to main content

Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement: An overview from a signal processing perspective

A window function is a mathematical function that is zero valued outside some chosen interval [1] , [2] . For applications like filtering, detection, and estimation, the window functions take the form of limited time functions, which are in general real and even functions [3] , [4] , while for applications like beamforming and image processing, they are limited spatial functions. A spatial window can be a complex function for optimizing the beams in magnitude as well as in phase, as in the case of certain antenna arrays, where the phasor currents in the array are complex numbers [5].

Read more

Algorithm-Driven Advances for Scientific CT Instruments: From model-based to deep learning-based approaches

Multiscale 3D characterization is widely used by materials scientists to further their understanding of the relationships between microscopic structure and macroscopic function. Scientific computed tomography (SCT) instruments are one of the most popular choices for 3D nondestructive characterization of materials at length scales ranging from the angstrom scale to the micron scale. These instruments typically have a source of radiation (such as electrons, X-rays, or neutrons) that interacts with the sample to be studied and a detector assembly to capture the result of this interaction (see Figure 1 ).

Read more

The Markov Random Field in Materials Applications: A synoptic view for signal processing and materials readers

The Markov random field (MRF) is one of the most widely used models in image processing, constituting a prior model for addressing problems such as image segmentation, object detection, and reconstruction. What is not often appreciated is that the MRF owes its origin to the physics of solids, making it an ideal prior model for processing microscopic observations of materials. While both fields know of their respective interpretations of the MRF, each knows very little about the other’s version of it. Hence, both fields have “blind spots,” where some concepts readily appreciated by one field are completely obscured from the other. 

Read more

The Hitchhiker’s Guide to Bias and Fairness in Facial Affective Signal Processing: Overview and techniques

Given the increasing prevalence of facial analysis technology, the problem of bias in the tools is now becoming an even greater source of concern. Several studies have highlighted the pervasiveness of such discrimination, and many have sought to address the problem by proposing solutions to mitigate it. Despite this effort, to date, understanding, investigating, and mitigating bias for facial affect analysis remain an understudied problem.

Read more

On the Evolution of Speech Representations for Affective Computing: A brief history and critical overview

Recent advances in the field of machine learning have shown great potential for the automatic recognition of apparent human emotions. In the era of Internet of Things and big-data processing, where voice-based systems are well established, opportunities to leverage cutting-edge technologies to develop personalized and human-centered services are genuinely real, with a growing demand in many areas such as education, health, well-being, and entertainment. 

Read more

Sound Event Detection: A tutorial

Imagine standing on a street corner in the city. With your eyes closed you can hear and recognize a succession of sounds: cars passing by, people speaking, their footsteps when they walk by, and the continuous falling of rain. The recognition of all these sounds and interpretation of the perceived scene as a city street soundscape comes naturally to humans. It is, however, the result of years of "training": 

Read more

Tracking and Estimation of Frequency, Amplitude, and Form Factor of a Harmonic Time Series

Formulas for estimating and tracking the (time-dependent) frequency, form factor, and amplitude of harmonic time series are presented in this lecture note; in particular, sine-dominant signals, where the harmonics follow roughly the dominant first harmonic, such as photoplethysmography (PPG) and breathing signals. Special attention is paid to the convergence behavior of the algorithm for stationary signals and the dynamic behavior in case of a transition to another stationary state. The latter issue is considered to be important for assessing the tracking abilities for nonstationary signals.

Read more

Interpreting Volitional Movement Intent From Biological Signals: A Review

This article reviews technologies and algorithms for decoding volitional movement intent using bioelectrical signals recorded from the human body. Such signals include electromyograms, electroencephalograms, electrocorticograms, intracortical recordings, and electroneurograms. After reviewing signal features commonly used for interpreting movement intent, this article describes traditional movement decoders based on Kalman filters (KFs) and machine learning (ML). 

Read more

Human Machine Interfaces in Upper-Limb Prosthesis Control: A Survey of Techniques for Preprocessing and Processing of Biosignals

Prostheses provide a means for individuals with amputations to regain some of the lost functions of their amputated limb. Human-machine interfaces (HMIs), used for controlling prosthetic devices, play a critical role in users' experiences with prostheses. This review article provides an overview of the HMIs commonly adopted for upper-limb prosthesis control and inspects collected signals and their processing methods.

Read more