SPM Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

SPM Articles

Signal processing (SP) is a “hidden” technology that has transformed the digital world and changed our lives in so many ways. The field of digital SP (DSP) took off in the mid-1960s, aided by the integrated circuit and increasing availability of digital computers. Since then, the field of DSP has grown tremendously and fueled groundbreaking advances in technology across a wide range of fields with profound impact on society. 

When I began writing this 75th anniversary article celebrating women in signal processing (SP), I reread the 1998 editorial titled “Fifty Years of Signal Processing: 1948–1998” [1] . At that time, IEEE had more than 300,000 members in 150 nations, the world’s largest professional technical Society. Within the IEEE umbrella, there were 37 IEEE Societies and technical groups, and the IEEE Signal Processing Society (SPS) was the oldest among its many Societies.

Throughout the IEEE Signal Processing Society’s (SPS’s) history, conferences have functioned as a main way to connect within the Society, bringing together the signal processing research community to discuss and debate, establish research collaborations, and have a good time.

Humans can listen to a target speaker even in challenging acoustic conditions that have noise, reverberation, and interfering speakers. This phenomenon is known as the cocktail party effect . For decades, researchers have focused on approaching the listening ability of humans. One critical issue is handling interfering speakers because the target and nontarget speech signals share similar characteristics, complicating their discrimination. 

Visualizing information inside objects is an everlasting need to bridge the world from physics, chemistry, and biology to computation. Among all tomographic techniques, terahertz (THz) computational imaging has demonstrated its unique sensing features to digitalize multidimensional object information in a nondestructive, nonionizing, and noninvasive way.

Electromagnetic (EM) imaging is widely applied in sensing for security, biomedicine, geophysics, and various industries. It is an ill-posed inverse problem whose solution is usually computationally expensive. Machine learning (ML) techniques and especially deep learning (DL) show potential in fast and accurate imaging. However, the high performance of purely data-driven approaches relies on constructing a training set that is statistically consistent with practical scenarios, which is often not possible in EM-imaging tasks. Consequently, generalizability becomes a major concern.

The compressive sensing (CS) scheme exploits many fewer measurements than suggested by the Nyquist–Shannon sampling theorem to accurately reconstruct images, which has attracted considerable attention in the computational imaging community. While classic image CS schemes employ sparsity using analytical transforms or bases, the learning-based approaches have become increasingly popular in recent years. Such methods can effectively model the structure of image patches by optimizing their sparse representations or learning deep neural networks while preserving the known or modeled sensing process. 

In addition to the impressive predictive power of machine learning (ML) models, more recently, explanation methods have emerged that enable an interpretation of complex nonlinear learning models, such as deep neural networks. Gaining a better understanding is especially important, e.g., for safety-critical ML applications or medical diagnostics and so on. Although such explainable artificial intelligence (XAI) techniques have reached significant popularity for classifiers, thus far, little attention has been devoted to XAI for regression models (XAIR). 
In many modern data science problems, data are represented by a graph (network), e.g., social, biological, and communication networks. Over the past decade, numerous signal processing and machine learning (ML) algorithms have been introduced for analyzing graph structured data. With the growth of interest in graphs and graph-based learning tasks in a variety of applications, there is a need to explore explainability in graph data science.
Data-driven solutions are playing an increasingly important role in numerous practical problems across multiple disciplines. The shift from the traditional model-driven approaches to those that are data driven naturally emphasizes the importance of the explainability of solutions, as, in this case, the connection to a physical model is often not obvious. Explainability is a broad umbrella and includes interpretability, but it also implies that the solutions need to be complete, in that one should be able to “audit” them, ask appropriate questions, and hence gain further insight about their inner workings.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel