Skip to main content

Hypercomplex Techniques in Signal and Image Processing Using Network Graph Theory: Identifying core research directions

This article aims to identify core research directions and provide a comprehensive overview of major advancements in the field of hypercomplex signal and image processing techniques using network graph theory. The methodology employs community detection algorithms on research networks to uncover relationships among researchers and topic fields in the hypercomplex domain.

Read more

Hypercomplex Signal and Image Processing: Part 1

Novel computational signal and image analysis methodologies based on feature-rich mathematical/computational frameworks continue to push the limits of the technological envelope, thus providing optimized and efficient solutions. Hypercomplex signal and image processing is a fascinating field that extends conventional methods by using hypercomplex numbers in a unified framework for algebra and geometry. 

Read more

Quaternions in Signal and Image Processing: A comprehensive and objective overview

Quaternions are still largely misunderstood and often considered an “exotic” signal representation without much practical utility despite the fact that they have been around the signal and image processing community for more than 30 years now. The main aim of this article is to counter this misconception and to demystify the use of quaternion algebra for solving problems in signal and image processing. To this end, we propose a comprehensive and objective overview of the key aspects of quaternion representations, models, and methods and illustrate our journey through the literature with flagship applications. We conclude this work by an outlook on the remaining challenges and open problems in quaternion signal and image processing.

Read more

Deep Learning Meets Sparse Regularization: A signal processing perspective

Deep learning (DL) has been wildly successful in practice, and most of the state-of-the-art machine learning methods are based on neural networks (NNs). Lacking, however, is a rigorous mathematical theory that adequately explains the amazing performance of deep NNs (DNNs). In this article, we present a relatively new mathematical framework that provides the beginning of a deeper understanding of DL. This framework precisely characterizes the functional properties of NNs that are trained to fit to data. The key mathematical tools that support this framework include transform-domain sparse regularization, the Radon transform of computed tomography, and approximation theory, which are all techniques deeply rooted in signal processing.

Read more

Empowering the Growth of Signal Processing: The evolution of the IEEE Signal Processing Society

Signal processing (SP) is a “hidden” technology that has transformed the digital world and changed our lives in so many ways. The field of digital SP (DSP) took off in the mid-1960s, aided by the integrated circuit and increasing availability of digital computers. Since then, the field of DSP has grown tremendously and fueled groundbreaking advances in technology across a wide range of fields with profound impact on society. 

Read more

The Evolution of Women in Signal Processing and Science, Technology, Engineering, and Mathematics

When I began writing this 75th anniversary article celebrating women in signal processing (SP), I reread the 1998 editorial titled “Fifty Years of Signal Processing: 1948–1998” [1] . At that time, IEEE had more than 300,000 members in 150 nations, the world’s largest professional technical Society. Within the IEEE umbrella, there were 37 IEEE Societies and technical groups, and the IEEE Signal Processing Society (SPS) was the oldest among its many Societies.

Read more