November 2021

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2021

Volume 38 | Issue 6

With the year coming to a close, I couldn’t help but reflect on our experiences in 2020 and 2021. I began my term as president of the IEEE Signal Processing Society (SPS) roughly 65 days before we were told to work from home due to the COVID-19 pandemic. As I write this column 18 months later, I find myself, like many of you, still largely working remotely.
Given the increasing prevalence of facial analysis technology, the problem of bias in the tools is now becoming an even greater source of concern. Several studies have highlighted the pervasiveness of such discrimination, and many have sought to address the problem by proposing solutions to mitigate it. Despite this effort, to date, understanding, investigating, and mitigating bias for facial affect analysis remain an understudied problem.
Researchers in an almost endless number of fields are embracing artificial intelligence (AI) and machine learning (ML) to develop tools and systems that can predict and adapt to a wide range of changing situations, optimize system performance, and intelligently filter signals. In areas as diverse as firefighter protection, solar power optimization, and exoplanet discovery, researchers are turning to AI, ML, and signal processing to help them achieve breakthroughs that were unimaginable only a few years ago.
Recent advances in the field of machine learning have shown great potential for the automatic recognition of apparent human emotions. In the era of Internet of Things and big-data processing, where voice-based systems are well established, opportunities to leverage cutting-edge technologies to develop personalized and human-centered services are genuinely real, with a growing demand in many areas such as education, health, well-being, and entertainment. 
Affective computing is computing that relates to, arises from, or deliberately influences emotion or other affective phenomena. Human emotion and affect in general are fundamental to human experience, influencing cognition, perception, and everyday tasks such as learning and communication, but are also fundamental to human health and well-being. 

SPS on Twitter

  • New SPS Webinar: On Wednesday, 8 February, join Dr. Roula Nassif for "Decentralized learning over multitask graphs"… https://t.co/GOgHb7vfAv
  • CALL FOR PAPERS: IEEE Signal Processing Magazine welcomes submissions for a Special Issue on Hypercomplex Signal an… https://t.co/UDvjUY2llT
  • New SPS Webinar: On 15 February, join Mr. Wei Liu, Dr. Li Chen and Dr. Wenyi Zhang presenting "Decentralized Federa… https://t.co/em0sQAK4V5
  • New SPS Webinar: On Monday, 13 February, join Dr. Joe (Zhou) Ren when he presents "Human Centric Visual Analysis -… https://t.co/Rc39HpkPKr
  • Help us illustrate the SPS story! In honor of our 75th anniversary, we need your support to capture the people, mem… https://t.co/MnYU9MzIok

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar