Efficient Dynamic Parallel MRI Reconstruction for the Low-Rank Plus Sparse Model

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Efficient Dynamic Parallel MRI Reconstruction for the Low-Rank Plus Sparse Model

By: 
Claire Yilin Lin ; Jeffrey A. Fessler

The low-rank plus sparse (L+S) decomposition model enables the reconstruction of undersampled dynamic parallel magnetic resonance imaging data. Solving for the low rank and the sparse components involves nonsmooth composite convex optimization, and algorithms for this problem can be categorized into proximal gradient methods and variable splitting methods. This paper investigates new efficient algorithms for both schemes. While current proximal gradient techniques for the L+S model involve the classical iterative soft thresholding algorithm (ISTA), this paper considers two accelerated alternatives, one based on the fast iterative shrinkage-thresholding algorithm (FISTA) and the other with the recent proximal optimized gradient method (POGM). In the augmented Lagrangian (AL) framework, we propose an efficient variable splitting scheme based on the form of the data acquisition operator, leading to simpler computation than the conjugate gradient approach required by existing AL methods. Numerical results suggest faster convergence of the efficient implementations for both frameworks, with POGM providing the fastest convergence overall and the practical benefit of being free of algorithm tuning parameters.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel