Guest Editors

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Guest Editors

Most of the work we do in signal processing these days is data driven. The shift from the more traditional and model-driven approaches to those that are data driven has also underlined the importance of explainability of our solutions. Because most traditional signal processing approaches start with a number of modeling assumptions, they are comprehensible by the very nature of their construction.
Affective computing is computing that relates to, arises from, or deliberately influences emotion or other affective phenomena. Human emotion and affect in general are fundamental to human experience, influencing cognition, perception, and everyday tasks such as learning and communication, but are also fundamental to human health and well-being. 
During the last few decades, the number of seniors over the age of 60 has increased significantly. A recent study from the United Nations has shown that the number of people aged 65 years or over will increase from 727 million in 2020 to 1.5 billion by 2050. Consequently, the proportion of the global population aged 65 years or over will increase from 9.3% in 2020 to 16% in 2050. 
Signal processing (SP) is at the very heart of our digital lives, owing to its role as the pivotal enabling technology for advancement across multiple disciplines. Its prominence in modern data science has created a necessity to supply industry, government labs, and academia with graduates who possess relevant SP expertise and are well equipped to deal with the manifold challenges in current and future applications.
The articles in this special section focus on graph signal processing. Generically, the networks that sustain our societies can be understood as complex systems formed by multiple nodes, where global network behavior arises from local interactions between connected nodes. More succinctly, a network or a graph can be defined as a structure that encodes relationships between pairs of elements of a set. The simplicity of this definition drives the application of graphs and networks to a wide variety of disciplines, such as biology, medicine, psychology, sociology, economics, engineering, computer science, and so on.

The articles in this special section focus on nonconvex optimization for signal processing and machine learning. Optimization is now widely recognized as an indispensable tool in signal processing (SP) and machine learning (ML). Indeed, many of the advances in these fields rely crucially on the formulation of suitable optimization models and deployment of efficient numerical optimization algorithms. In the early 2000s, there was a heavy focus on the use of convex optimization techniques to tackle SP and ML applications.

The articles in this special section were focused on the current state of the art as well as emerging trends in the design, development, and deployment of sensing and perception technologies for autonomous and automated driving. Such technologies include camera, ultrasound, Global Navigation Satellite System-, lidar-, and radar-based platforms integrat ing signa l processing components to process the acquired data and extract information to be used for recognition, navigation, and situational awareness.

The field of machine learning has undergone radical transformations during the last decade. These transformations, which have been fueled by our ability to collect and generate tremendous volumes of training data and leverage massive amounts of low-cost computing power, have led to an explosion in research activity in the field by academic and industrial researchers.

The articles in this special section focus on computational magnetic resonance imaging (MRI) using compressed sensing applications. Presents recent developments in computational MRI. These developments are pushing the frontier of computational imaging beyond CS. Similar to CS, most of these algorithms rely on image representation in one form or another. 

Since its inception in the early 1970s [1], magnetic resonance imaging (MRI) has revolutionized radiology and medicine. Apart from high-quality data acquisition, image reconstruction is an important step to guarantee high image quality in MRI.


SPS on Twitter

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar