November 2020

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2020
SPM November 2020

Volume 37 | Issue 6

Three years have gone by quickly. I started as the editor-in-chief (EIC) of IEEE Signal Processing Magazine (SPM) in January 2018. It coincided with other changes in my personal life that made the transition steeper than I had expected. Looking back, it is how I imagine the New Year’s polar bear plunge might be. Of course, three years of service is a tad bit longer than a few minutes of swimming in ridiculously cold water. 
The study of sampling signals on graphs, with the goal of building an analog of sampling for standard signals in the time and spatial domains, has attracted considerable attention recently. Beyond adding to the growing theory on graph signal processing (GSP), sampling on graphs has various promising applications. In this article, we review the current progress on sampling over graphs, focusing on theory and potential applications.
A major line of work in graph signal processing [2] during the past 10 years has been to design new transform methods that account for the underlying graph structure to identify and exploit structure in data residing on a connected, weighted, undirected graph. The most common approach is to construct a dictionary of atoms (building block signals) and represent the graph signal of interest as a linear combination of these atoms. Such representations enable visual analysis of data, statistical analysis of data, and data compression, and they can also be leveraged as regularizers in machine learning and ill-posed inverse problems, such as inpainting, denoising, and classification.
The notion of graph filters can be used to define generative models for graph data. In fact, the data obtained from many examples of network dynamics may be viewed as the output of a graph filter. With this interpretation, classical signal processing tools, such as frequency analysis, have been successfully applied with analogous interpretation to graph data, generating new insights for data science. What follows is a user guide on a specific class of graph data, where the generating graph filters are low pass; i.e., the filter attenuates contents in the higher graph frequencies while retaining contents in the lower frequencies. Our choice is motivated by the prevalence of low-pass models in application domains such as social networks, financial markets, and power systems. 
The articles in this special section focus on graph signal processing. Generically, the networks that sustain our societies can be understood as complex systems formed by multiple nodes, where global network behavior arises from local interactions between connected nodes. More succinctly, a network or a graph can be defined as a structure that encodes relationships between pairs of elements of a set. The simplicity of this definition drives the application of graphs and networks to a wide variety of disciplines, such as biology, medicine, psychology, sociology, economics, engineering, computer science, and so on.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel