- Home
- IEEE Signal Processing Magazine
CURRENT ISSUE
JULY 2025
MAY 2025
MARCH 2025
JANUARY 2025
September 2023
Quaternions in Signal and Image Processing: A comprehensive and objective overview
Quaternions are still largely misunderstood and often considered an “exotic” signal representation without much practical utility despite the fact that they have been around the signal and image processing community for more than 30 years now. The main aim of this article is to counter this misconception and to demystify the use of quaternion algebra for solving problems in signal and image processing. To this end, we propose a comprehensive and objective overview of the key aspects of quaternion representations, models, and methods and illustrate our journey through the literature with flagship applications. We conclude this work by an outlook on the remaining challenges and open problems in quaternion signal and image processing.
The Discrete Cosine Transform and Its Impact on Visual Compression: Fifty Years From Its Invention
Compression is essential for efficient storage and transmission of signals. One powerful method for compression is through the application of orthogonal transforms, which convert a group of
Discriminative and Generative Learning for the Linear Estimation of Random Signals
Inference tasks in signal processing are often characterized by the availability of reliable statistical modeling with some missing instance-specific parameters. One conventional approach uses data to estimate these missing parameters and then infers based on the estimated model. Alternatively, data can also be leveraged to directly learn the inference mapping end to end. These approaches for combining partially known statistical models and data in inference are related to the notions of generative and discriminative models used in the machine learning literature [1] , [2] , typically considered in the context of classifiers.
SPM is your Magazine - You Are Both Reader and Author: Contribute to IEEE Signal Processing Magazine
The objectives of IEEE Signal Processing Magazine ( SPM ) are to propose, for any IEEE Signal Processing Society (SPS) member and beyond, a wide range of tutorial articles on both methods and applications in signal and image processing. The articles are divided into different categories: feature articles, column and forum articles, and articles in special issues, the specificities of which are detailed on the SPM webpage “Information for Authors - SPM”.
Deep Learning Meets Sparse Regularization: A signal processing perspective
Deep learning (DL) has been wildly successful in practice, and most of the state-of-the-art machine learning methods are based on neural networks (NNs). Lacking, however, is a rigorous mathematical theory that adequately explains the amazing performance of deep NNs (DNNs). In this article, we present a relatively new mathematical framework that provides the beginning of a deeper understanding of DL. This framework precisely characterizes the functional properties of NNs that are trained to fit to data. The key mathematical tools that support this framework include transform-domain sparse regularization, the Radon transform of computed tomography, and approximation theory, which are all techniques deeply rooted in signal processing.
