
- Home
- Publications & Resources
- IEEE Signal Processing Magazine


CURRENT ISSUE

CURRENT ISSUE
March 2023
Physics-Driven Machine Learning for Computational Imaging: Part 2
Thanks to the tremendous interest from the research community, the focus of the March issue of the IEEE Signal Processing Magazine is on the second volume of the special issue on physics-driven machine learning for computational imaging, which brings together nine articles of the 19 accepted papers from the original 47 submissions.
A Guide to Computational Reproducibility in Signal Processing and Machine Learning
A computational experiment is deemed reproducible if the same data and methods are available to replicate quantitative results by any independent researcher, anywhere and at any time, granted that they have the required computing power. Such computational reproducibility is a growing challenge that has been extensively studied among computational researchers as well as within the signal processing and machine learning research community.
January 2023
Learning Nonlocal Sparse and Low-Rank Models for Image Compressive Sensing: Nonlocal sparse and low-rank modeling
The compressive sensing (CS) scheme exploits many fewer measurements than suggested by the Nyquist–Shannon sampling theorem to accurately reconstruct images, which has attracted considerable attention in the computational imaging community. While classic image CS schemes employ sparsity using analytical transforms or bases, the learning-based approaches have become increasingly popular in recent years. Such methods can effectively model the structure of image patches by optimizing their sparse representations or learning deep neural networks while preserving the known or modeled sensing process.
Happy New Year to All
May the year 2023 bring everyone closer to the fulfilment of their dreams. We have left behind a year marked with successes on multiple fronts, including health and technology as well as a year filled with proud people risking their lives for freedom. In particular, two big movements have captured our hearts: the fierce resistance of Ukranian people against the Russian invasion of their country, and the prodemocracy uprising in Iran with women in the lead.
Physics-Driven Machine Learning for Computational Imaging
Recent years have witnessed a rapidly growing interest in next-generation imaging systems and their combination with machine learning. While model-based imaging schemes that incorporate physics-based forward models, noise models, and image priors laid the foundation in the emerging field of computational sensing and imaging, recent advances in machine learning, from large-scale optimization to building deep neural networks, are increasingly being applied in modern computational imaging.