
- Home
- Publications & Resources
- IEEE Signal Processing Magazine


CURRENT ISSUE

CURRENT ISSUE
June 2023
IEEE Signal Processing Society: Celebrating 75 Years of Remarkable Achievements
It is our great pleasure to introduce the first part of this special issue to you! The IEEE Signal Processing Society (SPS) has completed 75 years of remarkable service to the signal processing community. When the Society was founded in 1948, we couldn’t imagine, for instance, how wireless networks of smartphones would be able to connect us easily at all times, or that an image processing algorithm would be able to detect cancer in a few seconds.
May 2023
Analysis of the Minimum-Norm Least-Squares Estimator and Its Double-Descent Behavior
Linear regression models have a wide range of applications in statistics, signal processing, and machine learning. In this Lecture Notes column we will examine the performance of the least-squares (LS) estimator with a focus on the case when there are more parameters than training samples, which is often overlooked in textbooks on estimation.
Promoting Integrity and Knowledge for the Well-Being of Humanity and Peace
One year ago, I was writing the IEEE Signal Processing Magazine 2022 May editorial when the Russian army brutally attacked Ukraine. One year after, war is always present… I can’t understand how a single man and his entourage can unleash such a killing spree and be responsible for so many deaths, especially innocent victims like children.
Toward Creating an Inclusive SPS Community
The underrepresentation of women in science, technology, engineering, and mathematics (STEM) fields is an issue that has been studied extensively [1] . Yet women still face many challenges, even though the demand for many STEM occupations has exploded. Many factors contribute to the low number of women in the STEM field. From an early age, girls are exposed to many cultural cues that dissuade them from participating in STEM fields. This gender bias is enforced by implicit or explicit messages from multiple sources.
Bounded-Magnitude Discrete Fourier Transform
Analyzing the magnitude response of a finite-length sequence is a ubiquitous task in signal processing. However, the discrete Fourier transform (DFT) provides only discrete sampling points of the response characteristic. This work introduces bounds on the magnitude response, which can be efficiently computed without additional zero padding. The proposed bounds can be used for more informative visualization and inform whether additional frequency resolution or zero padding is required.