A Local Metric for Defocus Blur Detection Based on CNN Feature Learning

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

A Local Metric for Defocus Blur Detection Based on CNN Feature Learning

By: 
Kai Zeng, Yaonan Wang, Jianxu Mao, Junyang Liu, Weixing Peng, Nankai Chen

Defocus blur detection is an important and challenging task in computer vision and digital imaging fields. Previous work on defocus blur detection has put a lot of effort into designing local sharpness metric maps. This paper presents a simple yet effective method to automatically obtain the local metric map for defocus blur detection, which based on the feature learning of multiple convolutional neural networks (ConvNets). The ConvNets automatically learn the most locally relevant features at the super-pixel level of the image in a supervised manner. By extracting convolution kernels from the trained neural network structures and processing it with principal component analysis, we can automatically obtain the local sharpness metric by reshaping the principal component vector. Meanwhile, an effective iterative updating mechanism is proposed to refine the defocus blur detection result from coarse to fine by exploiting the intrinsic peculiarity of the hyperbolic tangent function. The experimental results demonstrate that our proposed method consistently performed better than the previous state-of-the-art methods.

SPS on Twitter

  • On 15 September 2022, we are excited to partner with and to bring you a webinar and roundtable,… https://t.co/we14OUl2QV
  • The SPS Webinar Series continues on Monday, 22 August when Dr. Yu-Huan Wu and Dr. Shanghua Gao present “Towards Des… https://t.co/ZkHjQLLn7L
  • CALL FOR PAPERS: The IEEE/ACM Transactions on Audio, Speech, and Language Processing is now accepting submissions f… https://t.co/wkoVBKfE5j
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting submissions for a Spec… https://t.co/qoRbzFeMLL
  • Our Information Forensics and Security Webinar Series continues on Tuesday, 23 August when Dr. Anderson Rocha prese… https://t.co/q48hnIMfan

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar